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EEG Conformer: Convolutional Transformer
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Yonghao Song , Graduate Student Member, IEEE, Qingqing Zheng , Member, IEEE,
Bingchuan Liu , Student Member, IEEE, and Xiaorong Gao , Member, IEEE

Abstract— Due to the limited perceptual field, convolu-
tional neural networks (CNN) only extract local temporal
features and may fail to capture long-term dependencies for
EEG decoding. In this paper, we propose a compact Convo-
lutional Transformer,named EEG Conformer, to encapsulate
local and global features in a unified EEG classification
framework. Specifically, the convolution module learns the
low-level local features throughout the one-dimensional
temporal and spatial convolution layers. The self-attention
module is straightforwardly connected to extract the
global correlation within the local temporal features.
Subsequently, the simple classifier module based on fully-
connected layers is followed to predict the categories for
EEG signals. To enhance interpretability, we also devise
a visualization strategy to project the class activation
mapping onto the brain topography. Finally, we have
conducted extensive experiments to evaluate our method
on three public datasets in EEG-based motor imagery
and emotion recognition paradigms. The experimental
results show that our method achieves state-of-the-art
performance and has great potential to be a new baseline
for general EEG decoding. The code has been released in
https://github.com/eeyhsong/EEG-Conformer.

Index Terms— EEG classification, self-attention, trans-
former, brain-computer interface (BCI), motor imagery.

I. INTRODUCTION

BRAIN-COMPUTER interface (BCI) is an emerging
technology in recent decades, which establishes a direct

pathway between external devices and the brain. BCI has
brought many new applications in motor rehabilitation,
emotion recognition, human-machine interaction, etc [1], [2],
[3]. Among various non-invasive techniques, electroencephalo-
graph (EEG) is widely employed to detect neural activities,
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using a cap with multiple electrodes to capture changes in
potential on the scalp. With collected EEG signals, people
can decode them into movement, vision, and other intentions,
then use the results to control external devices such as
computers, wheelchairs, and robots [4], [5], [6]. Although
EEG is convenient and low-cost, EEG decoding is still very
challenging due to many artifacts caused by impedance and
other physiological signals [7].

Various pattern recognition methods have been developed
to decode useful information from noisy EEG signals.
These methods extract features and perform classification for
different tasks. For example, common spatial pattern (CSP)
is used to enhance spatial features for motor imagery (MI)
tasks [8]. The filter bank is further embedded for frequency
rhythms in MI and steady-state visually evoked potential
(SSVEP) classification [9]. Continuous wavelet transform
(CWT) is utilized to extract time-frequency features from
EEG signals for detecting dementia [10]. Empirical wavelet
transform (EWT) is applied to obtain improved time-frequency
features from EEG with good performance for seizure
detection [11], [12]. With these representative features, we can
effectively achieve EEG decoding just by following a classifier,
such as support vector machine (SVM) and multi-layer
perceptron (MLP) [13], [14]. However, most traditional feature
extraction methods are task-dependent, meaning that features
are obtained with specific prior knowledge for different BCI
paradigms and of limited generalization. Moreover, optimizing
feature extraction and classifier separately may also lead to
imperfect global optimization.

Researchers further attempt to decode EEG with end-to-
end convolutional neural network (CNN), which has shown
excellent representation capability in computer vision tasks
[15]. As expected, the modified CNN model, ConvNet [16],
achieves comparable performance to traditional algorithms
on EEG classification tasks, learning discriminative features
in convolutional layers. Similarly, the compact EEGNet [17]
demonstrates remarkable temporal feature perception and
shows good generalization across multiple BCI paradigms.
Nevertheless, due to the limited kernel size, CNNs learn
features with local receptive fields, but fail to acquire long-
term dependencies that are crucial for time series. Recurrent
neural networks (RNN) and long short-term memory (LSTM)
are further proposed to capture temporal features for EEG
classification [18], [19]. However, such models cannot be
trained in parallel, and the dependency influence computed
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by the hidden states is quickly lost after a few time
steps.

Lately, attention-based Transformer models have made
waves in natural language and image processing due to the
inherent perception of global dependencies [20]. Transformers
also emerge in EEG decoding and achieve good performance,
by leveraging long-term temporal relationships [21], [22].
However, such models ignore learning local features, which
are also necessary for EEG decoding. In that case, extra feature
extraction processing, such as activity map and spatial filter,
has to be added for compensation [23], [24]. And there is no
detailed analysis and visualization to clarify how Transformer
works for EEG decoding. Therefore, Transformer models
remain explored in the EEG domain and not yet capable of
serving as end-to-end backbones for raw EEG classification.

To tackle the above issues, we propose a Convolu-
tional Transformer framework, named EEG Conformer,
to comprehensively exploit the advantages of both CNN
and Transformer. The overall framework consists of three
components in series, namely, the convolution module, the
self-attention module and the classifier. In the convolution
module, we first employ temporal and spatial convolutions
to capture local temporal and spatial features, respectively.
An average pooling layer is followed to slice temporal feature
segments, which not only reduces the model complexity
but also removes redundant information. Then, we treat all
convolutional channels at each point in the time dimension
as a token and feed them into the self-attention module,
which further learns the global temporal dependencies with
self-attention layers. Finally, simple fully-connected layers are
used to obtain the decoding results. Detailed comparative
experiments are performed on several EEG datasets of
different paradigms to reveal the remarkable performance of
EEG Conformer.

The contributions are summarized as follows:
• We propose a concise network named Convolutional

Transformer (EEG Conformer) to couple local features
and global features of EEG signals. It achieves state-of-
the-art results on three public datasets, with the potential
to be a new backbone for EEG decoding.

• We conduct extensive experiments to investigate the effect
of the Transformer module and attention parameters.
The results show that our model is insensitive to the
depth and head number of the self-attention module while
processing EEG data.

• We design a novel visualization based on class activation
mapping and topography to illustrate how the model
learns essential features from a global perspective.

The rest of this paper is organized as follows. See Section II
for the related works. A detailed description of the method
is given in Section III. We present experiments and results
in Section IV. After then, there is a careful discussion in
Section V. Finally, we draw a conclusion in Section VI.

II. RELATED WORKS

A. EEG Decoding With Machine Learning

Advances in machine learning have facilitated the devel-
opment of EEG classification [25], [26], [27]. In recent

years, end-to-end deep learning methods have been widely
adopted to process EEG signals and show good generalization.
Schirrmeister et al. [16] proposed a shallow ConvNet
with temporal and spatial convolutional layers to decode
task-related information from raw EEG signals. Similarly,
Lawhern et al. [17] developed a compact EEGNet with
convolution along the temporal dimension and depthwise
convolution along the spatial dimension, respectively. These
two robust EEG-based CNN backbones soon inspired many
excellent studies. Sakhavi et al. [28] used CNN to learn
temporal information from the filter bank CSP features and
select architecture parameters for each subject. Shan et al. [29]
leveraged the cross-channel topological connectivity by
introducing graphs to spatial-temporal CNN. Hong et al. [30]
extracted subject-invariant features via CNN in an adversarial
learning-driven domain adaptation framework. There are also
works that proposed some tricks to enhance the performance
of CNN for EEG-based motor imagery tasks [31], [32].

B. Attention-Based Transformer Network

Attention-based Transformers derived from machine trans-
lation have attracted much attention. The attention mechanism
has the intrinsic ability to evaluate global dependencies on
very long sequences [20]. Dosovitskiy et al. [33] applied
pure Transformer on image patches and achieved good results
compared with CNN-based methods. Transformers are brought
into EEG processing because the global interaction is non-
negligible in task-related EEG trials. Kostas et al. [34]
designed a pre-training and fine-tuning approach using
Transformer for EEG classification tasks. Song et al.
performed feature learning from the spatial and temporal
domains, where the EEG signal was sliced along the time
dimension [22]. A similar framework was given by Liu et al.
[35] to deal with differential entropy features of EEG.
Bagchi et al. [23] converted EEG to multi-frame activity maps,
then used a CNN-based module as well as combined CNN and
Transformer modules to capture useful information. However,
feature extraction reduces the information in raw data and
often tends to depend on specific tasks. And previous studies
usually focused on how to improve EEG decoding accuracy,
while neglecting to interpret the role of global features with
long-term dependencies visually. Therefore, inspired by the
works above, we propose the EEG Conformer as an efficient
backbone with novel visualization.

III. METHODS

A. Overview

As an emerging neural network, Transformer is good at
capturing global dependencies, but how to effectively apply
it in EEG decoding remains to be explored. In this paper,
we propose a novel framework, called EEG Conformer,
to combine CNN and Transformer straightforwardly for end-
to-end EEG classification. Borrowing ideas from CNN and
Transformer, the Conformer uses convolution to learn local
temporal and spatial features and then adopts self-attention to
encapsulate global temporal features.
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Fig. 1. The framework of Convolutional Transformer (Conformer), including a convolution module, a self-attention module, and a classifier module.

The overall framework is depicted in Fig. 1. The archi-
tecture comprises three components: a convolution module,
a self-attention module, and a fully-connected classifier. In the
convolution module, taking the raw two-dimensional EEG
trials as the input, temporal and spatial convolutional layers
are applied along the time dimension and electrode channel
dimensions, respectively. Then, an average pooling layer
is utilized to suppress noise interference while improving
generalization. Secondly, the spatial-temporal representation
obtained by the convolution module is fed into the self-
attention module. The self-attention module further extracts
the long-term temporal features by measuring the global
correlations between different time positions in the feature
maps. Finally, a compact classifier consisting of several fully-
connected layers is adopted to output the decoding results.

B. Preprocessing

The raw EEG trials are of size ch × sp, where
ch represents electrode channels and sp denotes time
samples. Without introducing additional task-dependent prior
knowledge, we only use a few steps to pre-process the raw
EEG data. First, band-pass filtering is employed to filter out
extraneous high and low-frequency noise. Here, we use a
6-order Chebyshev filter to preserve task-relevant rhythms.
Then, a Z-score standardization is performed to reduce the
fluctuation and nonstationarity as

xo = xi − μ√
σ 2

, (1)

where xi and xo denote band-pass filtered data and the output
of standardization, respectively. μ and σ 2 represent the mean
and variance, calculated with the training data and used
directly for the test data.

C. Network Architecture

As shown in Fig. 1, EEG Conformer consists of three steps
in the end-to-end process: convolution module, self-attention
module, and fully-connected classifier. The input is a batch of
pre-processed EEG trials with channel and sample dimensions,
expanded by one dimension as the convolution channel. The
output is the probability of different EEG categories.

TABLE I
NETWORK ARCHITECTURE OF THE CONVOLUTION MODULE

1) Convolution Module: Inspired by [16] and [17], we design
the convolution module by separating the two-dimensional
convolution operator into two one-dimensional temporal and
spatial convolution layers. The first layer has k kernels of size
(1, 25) with a stride of (1, 1), which means the convolution is
performed over the time dimension. The second layer keeps k
kernels of size (ch, 1) with a stride of (1, 1), where ch equals
the number of electrode channels of EEG data. This layer acts
as a spatial filter to learn the representation of the interactions
between different electrode channels. Subsequently, batch
normalization is adopted to boost the training process and
alleviate overfitting. We use exponential linear units (ELUs)
as the activation function for nonlinearity following [17]. The
third layer is an average pooling along time dimension with
the kernel size of (1, 75) and a stride of (1, 15). This pooling
layer smooths the temporal features, which not only avoids
overfitting, but also reduces the computational complexity.
As shown in Table I, the hyper-parameter k is set to 40. In the
end, we rearrange the feature maps of the convolution module,
squeeze the electrode channel dimension, and transpose the
convolution channel dimension with the time dimension.
In this way, we feed all feature channels of each temporal
point as a token into the next module.

2) Self-Attention Module: We assume that the context-
dependent representation within the low-level temporal-spatial
features would benefit the EEG decoding, because the neural
activities are coherent. In this module, we use self-attention
to learn global temporal dependencies of EEG features,
complementing the limited receptive field in the convolution
module. The arranged tokens from the previous module are
linearly transformed into equal-shaped triplicates, called query
(Q), key (K), and value (V). Dot product is employed over Q
and K to evaluate the correlation between different tokens.
A scaling factor is designed to avoid vanishing gradients,
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thus ensuring stable training. The result is passed through a
Sof tmax function to obtain the weighting matrix, namely the
attention score. Then the attention score is weighted on V with
a dot product [20]. This process can be formulated as

Attention(Q, K , V ) = Sof tmax(
QK T

√
k

)V , (2)

where k denotes the length of a token. Besides, two
fully-connected feed-forward layers are connected behind to
enhance the fitting ability. The input and output sizes of this
process remain the same. The entire attention computation is
repeated N times in the self-attention module.

We also employ the multi-head strategy to further improve
representation diversity. The tokens are equally divided into
h segments and fed into the self-attention module separately,
and the results are concatenated as the module output [20].
The process can be expressed as

MHA(Q, K , V ) = [head0; · · · ; headh−1],
headl = Attention(Ql , Kl , Vl) (3)

where MHA stands for multi-head attention, Ql , Kl , Vl ∈
R

m×k/h denote the query, key, and value obtained by linear
transformation of divided token in the l-th head, respectively.

3) Classifier Module: Finally, we adopt two fully-
connected layers as the classifier module, which outputs an
M-dimensional vector after Sof tmax function. Cross-entropy
is used as the loss function of the whole framework as

L = − 1

Nb

Nb∑

i=1

M∑

c=1

y log(ŷ). (4)

where M represents the number of EEG categories, y and
ŷ are the ground truth and predicted label, respectively. Nb

denotes the number of trials in a batch.
To sum up, the band-pass filtered and standardized EEG data

are fed into the model firstly. Then the data are sequentially
passed through the temporal and spatial convolution layers and
arranged into tokens by the pooling layer. After that, N self-
attention layers are used, followed by fully-connected layers
to output the classification results.

IV. EXPERIMENTS AND RESULTS

In this section, we conduct experiments to verify the
proposed network on three public EEG datasets, including
popular motor imagery and emotion recognition paradigms.
We not only compare our method with different state-of-
the-art approaches, but also demonstrate the improvements
by introducing the attention-based Transformer through
ablation studies. We also present detailed comparative
experiments to show the influence of attention parameters on
overall performance. Finally, we design different visualization
methods for interpretability.

A. Datasets

We evaluate our method on three widely used EEG
datasets, including BCI competition IV dataset 2a,1 BCI

1https://www.bbci.de/competition/iv/desc_2a.pdf

competition IV dataset 2b,2 SEED3 [36] These EEG datasets
were collected with different acquisition devices, paradigms,
number of subjects, and sample size, thus fairly validating the
generalization of our method.

1) Dataset I: BCI Competition IV Dataset 2a provided by
Graz University of Technology consists of EEG data from
9 subjects. There were four motor imagery tasks, covering
the imagination of moving left hand, right hand, both feet,
and tongue. Two sessions on different days were collected
with twenty-two Ag/AgCl electrodes at a sampling rate of
250 Hz. One session contained 288 EEG trials, i.e., 72 trials
per task. We used [2, 6] seconds of each trial and filtered the
EEG data to [4, 40] Hz with a band-passed filter as [8] in our
experiments. The first session was used for training and the
second session for test.

2) Dataset II: BCI Competition IV Dataset 2b provided by
Graz University of Technology consists of EEG data from
9 subjects. There were two motor imagery tasks, covering the
imagination of moving left and right hand. Five sessions were
collected with three bipolar electrodes (C3, Cz, and C4) at a
sampling rate of 250 Hz and each session contained 120 trials.
We used the [3, 7] seconds of each trial in the experiments.
We also performed band-pass filtering between [4, 40] Hz to
reduce high and low-frequency noise. The first three sessions
were training set, and the last two sessions were test set.

3) Dataset III: SEED dataset provided by Shanghai Jiao
Tong University consists of emotion-based EEG signals from
15 subjects. There were three emotions, including positive,
neutral, and negative, stimulated by fifteen film clips. The data
collection process was repeated three times on each subject
at approximately weekly intervals. The EEG signals were
captured with 62 electrodes at a sample rate of 1000 Hz
and subsequently downsampled to 200 Hz. Each sample was
segmented with a non-overlapped one-second time window,
resulting in a total of 3394 trials from one session. We also
performed band-pass filtering of [4, 47] Hz on the data. Five-
fold cross-validation was used in the SEED dataset.

B. Data Augmentation

EEG acquisition is time-consuming, which results in
small datasets that are prone to overfitting. Some methods
employ data augmentation to feed enough samples into the
models [16]. However, the conventional strategies of adding
Gaussian noise or cropping may further lower the signal-
to-noise ratio or destroy the original coherence. Therefore,
we employ segmentation and reconstruction (S&R) in the time
domain to generate new data. Follow [37], the training samples
of the same category are equally divided into Ns segments,
then randomly concatenated while maintaining the original
time order. We generate the augmented data of the same size
as the batch in each iteration.

C. Experiment Details

Our method is implemented with PyTorch library in Python
3.10 with a Geforce 3090 GPU. We train the model using

2https://www.bbci.de/competition/iv/desc_2b.pdf
3https://bcmi.sjtu.edu.cn/home/seed/seed.html
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Adam optimizer with the learning rate, β1 and β2 of 0.0002,
0.5, and 0.999, respectively. We set the execution times N of
self-attention to 6, the number of heads h to 10, and the Ns

in S&R to 8. The classification accuracy and kappa are used
as evaluation metrics for the overall performance. Kappa can
be calculated with

kappa = po − pe

1 − pe
, (5)

where po represents the average accuracy of all the trials and
pe denotes the accuracy of random guesses. Wilcoxon Signed-
Rank Test is employed to analyze the statistical significance.

D. Baseline Comparison

We conduct extensive subject-dependent experiments and
compare our method with some state-of-the-art approaches on
three public datasets.

Datasets I is currently the most widely used multi-class
motor imagery dataset. We compare many representative
methods, which have achieved impressive performance on
this dataset. For example, FBCSP [8], the winner of BCI
Competition IV using hand-crafted spatial features; Con-
vNet [16] and EEGNet [17], which have shown remarkable
results on many EEG datasets with CNN-based end-to-end
frameworks; C2CM [28], which inputs the FBCSP features
to the CNN model, combining the advantages of traditional
feature extraction and deep learning methods; FBCNet [38],
extracting spectro-spatial features by spatial filtering multi-
view data. We even compare with deep representation-based
domain adaptation (DRDA) [39] that utilizes data from other
subjects for enhancement with adversarial learning.

The classification performance of each subject and the
average results on Dataset I are presented in Table II.
We can observe that our Conformer significantly improves the
accuracy by 10.91% over FBCSP (p < 0.01), which depends
on traditional feature extraction. The results also show that
other deep learning methods, such as ConvNet and EEGNet,
outperform FBCSP, indicating that the CNN-based methods
have strong feature representation capability. However, these
CNN-based methods only focus on local features due to the
limited perceptual field, and ignore the global correlation,
which may compromise the decoding accuracy for coherent
EEG series. Differently, our method encapsulates both the
local and global dependencies by integrating Transformer
architecture on the basis of the original CNN. Thus, Conformer
obtains better results on most subjects and achieves significant
upgrades on average accuracy (p < 0.05) and kappa. C2CM
and FBCNet effectively combine the idea of hand-crafted
features and deep models, but still cannot beat ours except for
subject 5 (p < 0.05), although C2CM fine-tuned the model
parameters for each subject. DRDA brings in data from other
subjects with the distribution aligned to the target subject,
which is still inferior to ours just using the data of target
subject (p < 0.05), once again demonstrating the effectiveness
of leveraging both local and global features.

Then we present the comparison with several state-of-the-
art methods on Dataset II in Table III. We can see that the
binary classification results show similar trends as in Dataset I.

Fig. 2. Loss and accuracy during training of EEG Conformer.

Conformer promotes the overall performance significantly
compared with FBCSP (p < 0.05), with even an increasing
accuracy of 12.5% on subject 1. There is an obvious boost
by contrast with other end-to-end methods using just CNN
architecture, with improvements of 5.25% and 4.15% for
ConvNet (p < 0.05) and EEGNet (p < 0.01). The average
accuracy and kappa of our method still precede DRDA on
almost all the subjects, which further validates the efficacy of
our method.

We also comprehensively evaluate our method on Dataset III
of multi-category EEG emotion data. We compare with
machine learning methods like SVM [36], which first achieved
notable results on this dataset; graph regularized extreme
learning machine (GELM) [40] with a single feed-forward
layer to learn discriminative features, and regions to global
spatial-temporal neural network (R2G-STNN) [42] that adopts
the bidirectional long short term memory to learn spatial
and temporal features of emotion EEG signals. Besides,
graph-based neural networks learning the intrinsic relationship
among different EEG channels such as dynamical graph
convolutional neural network (DGCNN) [41] and regularized
graph neural network (RGNN) [43] are also included for
comparison. The results are presented in Table IV. It can
be seen that Conformer is still competitive on Dataset III
compared with other state-of-the-art methods. In this way,
our method achieves impressive performance on both motor
imagery and emotion recognition paradigms, illustrating that
our method has good generalization.

E. Training Process

In image processing, Transformer models often need a
large amount of data for pre-training to achieve good results
in downstream tasks. However, pre-training is not used in
EEG Conformer, due to the limited data for calibration.
We demonstrate the trend of loss and accuracy during training
in Fig. 2. The process is stable under the lightweight use of
the self-attention module. It can be noticed that the model
converges quickly around the 250th epoch. Moreover, our
method is also efficient. We train the Conformer model
continuously with the first subject in Dataset I for 2000 epochs
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TABLE II
COMPARISONS WITH STATE-OF-THE-ART METHODS ON DATASETS I

TABLE III
COMPARISONS WITH STATE-OF-THE-ART METHODS ON DATASETS II

TABLE IV
COMPARISONS WITH STATE-OF-THE-ART METHODS ON DATASETS III

on a single GPU, obtaining an average time of 0.27 seconds
per epoch.

F. Ablation Study

The key improvement of EEG Conformer over the
CNN-based approach is the addition of the attention-based
Transformer module for learning global representations.
As well, data augmentation may have contributed to the final
results. Therefore, We conduct an ablation study on Dataset I,
as shown in Fig. 3, where the self-attention module and the
S&R data augmentation is removed separately. It can be
seen that when the Transformer part is removed, there is a
substantial decrease in the result on each subject. Subject 6
reduces the most by 8.68%, and subject 3 reduces the
least by 3.12%. The average accuracy drops significantly by
6.02% (p < 0.01). Similar to ConvNet [16], the experimental
results in Fig. 3 also show the data augmentation strategy
can help improve the performance of our model. The overall
performance improves by an average accuracy of 3.75%
(p < 0.01) compared with the one without data augmentation.
Interestingly, the improvement is only 1.04% for subject
1 with better discrimination, while for subject 5 and 6, who
perform originally poor, the improvements are more significant
and reach 4.86% and 5.56%, respectively. Therefore, the
introduction of data augmentation in the training process
enhances the robustness of Conformer.

Fig. 3. Ablation study on the self-attention module and data
augmentation.

G. Parameter Sensitivity

In this section, we evaluate in detail the impact of
several important parameters in the self-attention module on
performance. These include the depth N of self-attention
layers, the number h of attention heads, and the design of the
pooling kernel, which constructs the input for learning global
features.

Depth is usually a crucial factor affecting the fitting ability
of end-to-end models, such as CNN and Transformer. As in
Fig. 4, we explore the effect of depth on EEG Conformer
by gradually increasing the layers of self-attention module
from 0 to 15. It can be seen that for Dataset I, there is
a significant improvement in accuracy when the depth goes
from 0 to 1 (p < 0.01). It illustrates the introduction of
Transformer does help EEG decoding once again. For the
other depths, the highest accuracy is only 1.24% higher than
the lowest. And the difference is not significant (p > 0.05).
However, as shown in the parameter curves, the number
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Fig. 4. The influence of the depth of the self-attention module
(from 0 to 15) on the accuracy and the amounts of parameters for
Dataset I and II.

Fig. 5. The influence of the number of attention heads on the accuracy
for different datasets.

of parameters increases proportionally with depth, which
makes the model less cost-effective. The same evaluation on
Dataset II also shows the insensitivity of Conformer to self-
attention depth.

Head is an important parameter of common Transformer
models based on the multi-head attention. It is reported that
it can help to learn different aspects of features. We also
compare the impact of different head selections on the model,
as shown in Fig. 5, choosing eight head numbers between
1 and 40. From the box, there is no clear pattern for the
effect of different head numbers on the results. The distribution
of different subjects has no obvious difference. The average
accuracy maintains a mild fluctuation, where the range is just
1.43% on Dataset I and 1.02% on Dataset II. The performance
has a slight upward trend as the head number increases
but then declines. The average accuracy is 0.82% higher in
Dataset I and 0.50% higher in Dataset II (p > 0.05), when
the number of heads is taken as 10 than when it is taken as 1.
Overall, changes in the number of heads have not yet shown
a significant effect in prompting feature learning.

Fig. 6. The influence of different kernel sizes in the pooling layer, namely,
the token size of the self-attention module.

Fig. 7. t-SNE visualization illustrates the significance of introducing
Transformer for feature learning. Different colors represent different
categories.

The token determined by the pooling kernel, is also a critical
factor for the self-attention module. If the kernel size is too
large, the temporal features would be too smoothed and lose
useful details. Thus, it is difficult for the model to perceive
the global relationship between details. In contrast, if the
kernel is too small, the performance may be easily affected
by local noise. We compare the effect of different pooling
kernel choices on model performance as in Fig. 6. The kernel
size is taken from 15 to 135 with an interval of 10. It is clear
to see a substantial upgrade in the average accuracy when the
kernel size starts to grow. A gain of 13.08% (p < 0.01) is
obtained on Dataset I by increasing the kernel from 15 to 45.
After that, the results flatten out and do not rise observably
with increasing kernel size. The experiments demonstrate that
applying self-attention to sufficiently large slices does make
sense for EEG with a low signal-to-noise ratio.
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Fig. 8. Raw EEG topography averaged over all trials of each subject, Class Activation Mapping (CAM) of the Transformer module on the input
EEG, Class Activation Topography (CAT) we designed to show CAM-weighted EEG. Raw shows that many regions are activated throughout the
trial. CAM shows that our model pays different attention to different ranges in the time domain. CAT shows our model focus on areas of the motor
cortex in motor imagery data.

Fig. 9. CAT shows the ERD/ERS phenomena on both the data of imagining left and right hand movements, compared to the irregular
patterns in raw EEG topography. Contralateral activation and ipsilateral inhibition can be clearly observed in the CAT of several subjects, such
as S1, S7, and S8.

H. Visualization

We visualize two perspectives to show the interpretability
of EEG Conformer, including deep features by t-SNE [44] and
spatial-temporal features reflected on topography.

1) Feature Distribution: t-distributed stochastic neighbor
embedding (t-SNE) is a popular statistical dimension reduction
and visualization method. The feature distribution of Subject 1
in Dataset I after adequate training with and without
Transformer is shown in Fig. 7. We can see that for training
data, the features of different categories are relatively close
without the help of Transformer. After adding Transformer, the
inter-category distance becomes larger, and the intra-category
distance becomes smaller, as in Fig. 7(b). On the other hand,
the aliasing between categories is evident in the absence of
Transformer, which sharpens category boundaries in Fig. 7(d).

2) Global Representation: Transformer is introduced to
learn global temporal dependencies in EEG data, which
means locating more important information for decoding tasks
from time series. We use topography and Gradient-weighted
Class Activation Mapping (CAM) [45] to show the global
representation learned by our model with motor imagery
Dataset I in Fig. 8. The first row in the figure denotes that all
training trials of each subject are averaged for the topography.

There are no apparent clues of active brain regions among
different subjects. CAM is adopted to monitor the time period
that the self-attention module pays attention to on the EEG
features, as shown in the second row of Fig. 8. EEG data is
drawn as a circle, clockwise from the top during the motor
imagery process. Different activation is presented at different
time. As expected, data of all subjects are attenuated at the
beginning of trials, which may indicate a latency for movement
intention.

We further propose a new visualization method applied
to EEG named Class Activation Topography (CAT). EEG
Topography is drawn on the normalized data multiplied by
the normalized CAM. From the third row of Fig. 8, most of
the EEG data weighted by CAM focus on the area of the motor
cortex, consistent with the paradigm of motor imagery [46].
Furthermore, the raw EEG and CAT of imagining left-hand
movement and right-hand movement are plotted in Fig. 9.
We are surprised to find event-related desynchronization
(ERD) and event-related synchronization (ERS) phenomenon.
Obvious contralateral activation and ipsilateral inhibition are
observed in the CAT of several subjects, such as the first
and eighth one, compared with the irregular raw EEG
topography.
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Fig. 10. CAM and CAT of the model with only 1 head in the self-attention module. The activation is close to that in Fig. 8 with 10 heads.

V. DISCUSSION

The practicality of BCI systems depends on the performance
of the decoding method. We propose a very concise but
effective method named Conformer to combine the advantages
of CNN and Transformer networks. Conformer is a lightweight
solution for EEG decoding without pre-training. It only
employs a few steps for preprocessing, including band-pass
filtering and standardization, without depending heavily on
specific tasks. The convolution module with both temporal
and spatial convolution layers pays attention to the low-level
representation, considering the local temporal features, while
the self-attention module further focuses on the long-term
dependencies and captures the global temporal correlation.
Thus, the proposed method is capable of learning more
discriminative representation compared with the existing
CNN-based models.

In experiments, we can see that EEG Conformer achieves
state-of-the-art results on three datasets with different
paradigms and data acquisitions. The ablation study presents
that Transformer module contributes significantly to the
overall model, and data augmentation helps improve training
performance. We also explore the effect of several key
parameters on the model. The results show that the model
is not sensitive to the depth and head number of the
self-attention module. However, the kernel size of the
pooling layer reveals a noticeable effect, which suggests
that a large unit to apply attention can help to avoid the
interference of local noise. Detailed visualizations are used for
interpretability illustrations. The Transformer module provides
better discrimination capability as the feature distribution
shown by t-SNE. We also design a new visualization approach
name CAT to discover the function of a layer in a model
by combining EEG topography and CAM. The results
demonstrate that our model focuses on changes near the motor
cortex with motor imagery data. Besides, ERD/ERS produced
by the imagery of left and right hands is also clearly perceived.

The role of multi-heads in the self-attention module remains
unclear, so we train the model with only 1 head for Dataset I,
and plot CAM and CAT in Fig. 10. We can see that the
activation of the self-attention module is close to that in Fig. 8
with 10 heads. The comparison indicates that both cases learn
similar global features, resulting in similar decoding accuracy.
The slight difference in activation still needs to be addressed.

There are several more limitations. Firstly, we mainly
validate oscillatory EEG data such as motor imagery and
emotion, which lack stationary patterns as event-related
potential (ERP) EEG data. Secondly, the parameter scale of

the current model is not small. For Dataset I, the parameters
of the Conformer increase by 17.6% compared to removing
the self-attention module. These additional costs arise from the
linear transformation and feed-forward layer used to calculate
global dependencies. Although we have confirmed that the
time cost to train the model is acceptable for actual use,
it is still an issue that can be improved. Besides, the fully-
connected classifier contributes a large number of parameters.
Global average pooling may be used as an alternative with
little performance degradation. Third, the proposed method is
trained and validated on each individual, and cannot utilize
useful information from other subjects. We will apply this
model in ERP and subject-independent tasks in the future.

VI. CONCLUSION

This paper proposes a concise and efficient EEG decoding
method called Conformer. Transformer is incorporated into
CNN to learn global dependencies in the temporal domain.
Remarkable results are achieved on different EEG datasets
with detailed comparative experiments. The visualization also
shows that our model locates key information that conforms to
the principles of the paradigm on a global level. Overall, our
model yields good performance in promoting EEG decoding.
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