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Abstract— A brain-computer interface (BCI) provides a
direct communication channel between a brain and an
external device. Steady-state visual evoked potential based
BCI (SSVEP-BCI) has received increasing attention due to
its high information transfer rate, which is accomplished
by individual calibration for frequency recognition. Task-
related component analysis (TRCA) is a recent and state-
of-the-art method for individually calibrated SSVEP-BCIs.
However, in TRCA, the spatial filter learned from each stim-
ulus may be redundant and temporal information is not fully
utilized. To address this issue, this paper proposes a novel
method, i.e., task-discriminant component analysis (TDCA),
to further improve the performance of individuallycalibrated
SSVEP-BCI. The performance of TDCA was evaluated by
two publicly available benchmark datasets, and the results
demonstrated that TDCA outperformed ensemble TRCA and
other competing methods by a significant margin. An offline
and online experiment testing 12 subjects further validated
the effectiveness of TDCA. The present study provides a
new perspective for designing decoding methods in indi-
vidually calibrated SSVEP-BCI and presents insight for its
implementation in high-speed brain speller applications.
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I. INTRODUCTION

A BRAIN-COMPUTER interface (BCI) enables people to
interface and interact with the outside world by leverag-

ing brain signals related to sensation, perception or high-level
cognitive activities [1]. BCI technology generally falls into the
categories of invasive and noninvasive paradigms. For the non-
invasive paradigm, steady-state visual evoked potential based
BCI (SSVEP-BCI) [2] has enjoyed wide-spread adoption due
to its advantages in high information transfer rate (ITR), low
cost, and ease of use. The merit of high ITR is attributable
to the high signal-to-noise ratio (SNR) profile of SSVEP,
which is a frequency-tagged occipital brain signal that can be
evoked by flickers, moving gratings, and reversible checker-
boards. The relatively high performance of SSVEP-BCI helps
with the development of practical applications related to
dialing [3] and spelling [2], as well as other end-user
applications, e.g., wheelchair control [4], and smart home
applications [5].

The past decades have witnessed rapid progress in the
development of frequency recognition methods for improv-
ing the performance of SSVEP-BCI. Based on whether the
supervision of calibration or training data are required, fre-
quency recognition methods can be categorized into training-
free methods, and supervised or training-based methods.
Training-free methods recognize stimulus frequencies in a
plug-and-play manner, including canonical correlation analysis
(CCA) [6] and its filter-bank extension [2], minimum energy
combination (MEC) [7], multivariate synchronization index
(MSI) [8], and Ramanujan periodicity transforms (RPT) [9],
etc. However, training-free methods work at the expense of
ITR and long stimulation duration. To circumvent the prob-
lems, training-based methods conventionally leverage indi-
vidual calibration data to construct individual templates and
spatial filters, which yield a substantial improvement in ITR
and a reduction in the required data length. In general, the lit-
erature reports two main categories of training-based meth-
ods, i.e., CCA-derived methods and task-related component
analysis (TRCA)-derived methods. Specifically, CCA-derived
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methods optimize spatial filters by maximizing the correlation
coefficient in the projection subspace, and the orthogonal
subspace corresponding to the maximal correlation coefficient
is used for frequency recognition. This line of work, to name
a few, the extended CCA [10], modified extended CCA
(m-extended CCA) [2] and L1-regularized multiway CCA
(L1MCCA) [11] usually utilize a sine-cosine reference signal.
Distinct from these CCA-derived methods, TRCA [12] is a
recently proposed and state-of-the-art method that maximizes
the reproducibility between trials in SSVEP-BCI. Follow-
up studies of TRCA facilitate detection by exploiting addi-
tional information, e.g., neighboring stimuli [13], reference
signals [14], or similarity constraints [15].

The motivation of the present study derives from the redun-
dancy of spatial filters in TRCA. Previous studies imply that
different classes of stimuli share a common spatial pattern or
spatial filter in SSVEP-BCI [13], [16], [17]. Thus, to enhance
performance, TRCA usually employs an ensemble technique
by concatenating the spatial filters from each class. However,
the concatenation of spatial filters yields redundancy, and the
mechanism of how to determine the optimal redundancy is
not well understood to date. A variant of TRCA [13] further
increased this redundancy by learning across neighboring stim-
uli, which improved the ITR. But, the issue of the ensemble
technique has yet been addressed. As the spatial patterns are
similar across stimuli, learning the spatial filter from each
stimulus is not necessary. Therefore, this study proposes to
learn projection directions that are shared by all classes of
data. Different from the TRCA, which is based on a generative
model, the proposed method tackles the problem of frequency
recognition with a discriminative model. Furthermore, it is
postulated that the temporal information of SSVEP is not fully
utilized and has the potential to benefit frequency recogni-
tion. Based on these intuitions, a task-discriminant compo-
nent analysis (TDCA) method is proposed for individually
calibrated SSVEP-BCI in this study. The effectiveness of
the proposed method is verified by two benchmark datasets,
an offline experiment and an online experiment.

The remainder of this paper is structured as follows:
Section 2 introduces an overview of TRCA and the pro-
posed TDCA, along with the datasets, experimental setup,
performance evaluation, and feature evaluation in the technical
validation. The result of the technical validation is presented in
Section 3. The methodological and practical benefits of TDCA
are discussed in Section 4. And finally this paper is concluded
in Section 5.

II. METHODS

A. Task-Related Component Analysis

TRCA [12] is a recently developed state-of-the-art
method to boost the performance of individually calibrated
SSVEP-BCI at short data lengths. The intuition of TRCA is
to maximize the reproducibility of task-related components
after spatial filtering. The underlying assumption of TRCA is
a generative model and its signal model is given as follows:

x j (t) = a1, j s(t) + a2, j n(t), j = 1, 2, . . . , Nch (1)

Fig. 1. Flow chart of task-discriminant component analysis (TDCA)
(A) and a schematic comparison of the difference between task-related
component analysis (TRCA) and TDCA (B and C). In the flow chart (A),
the augmented data for both the training sample and test sample are
initially formed by temporally delayed copies. Then, the data are projected
onto the subspace spanned by a sinusoidal reference signal, and finally,
a discriminant analysis is performed to derive spatio-temporal filters. The
detection statistics are obtained by template matching. In the comparison
(B and C), the triangles, dots, and squares denote the single-trial SSVEP
samples from different classes. For illustrative purposes, only three
classes are shown. The shaded areas covering the samples in B denotes
the probability distributions the generative model assumes. The dashed
line denotes the spatial filter or projection direction. Different from the
generative model of TRCA, TDCA utilizes a discriminative model to learn
the projection direction for all classes.

where x(t) is the observation, s(t) is the task-related compo-
nent, and n(t) is the task-unrelated component. a1, j and a2, j

are mixing coefficients for task-related components. Nch is the
number of channels. s(t) can be estimated by maximizing the
inter-trial covariance after spatial filtering:

wT Sw =
Nt�

h1,h2=1
h1 �=h2

Nch�
j1, j2=1

w j1w j2Cov
�

x (h1)
j1
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(2)

To solve the optimization problem, a quadratic constraint of
finite variance is added

wT Qw =
Nch�

j1, j2=1

w j1w j2 Cov
�
x j1(t), x j2(t)

�
(3)

Then, the TRCA spatial filter can be derived from the
generalized Rayleigh quotient problem

�w = arg max
w

wT Sw

wT Qw
(4)

It is worth noting that ensemble TRCA employs an ensem-
ble technique to constitute the final spatial filter:

W (m) =
�
w

(m)
1 ,w

(m)
2 , · · · ,w

(m)
Nc

	
(5)

where m denotes the filter bank in [18] and Nc denotes the
number of classes.
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B. Task-Discriminant Component Analysis

The flow chart of TDCA is illustrated in Figure 1 A.
Figure 1 B and C illustrate the distinction between TRCA and
the proposed TDCA in terms of underlying assumptions and
spatial filters. Different from the generative model of TRCA,
this study utilizes a discriminative model. In contrast to the
strategy that optimizes the spatial filter for each class, here,
discriminant analysis is employed to seek the spatio-temporal
filter with respect to all classes. The details of the proposed
TDCA are presented in the followings.

In an individually calibrated SSVEP-BCI, consider X(i) ∈
R

Nch×Np is the i -th training trial, i = 1, 2, · · · , Nt , where Nt

is the number of trials, and Np is the number of sampling
point. For each training trial, the dimensionality of the EEG
data is elevated first, as follows:


X =
�

XT , XT
1 , · · · , XT

l

	T
(6)

where 
X ∈ R
(l+1)Nch×Np is the augmented EEG trial.

X l ∈ R
Nch ×Np denotes the EEG trial delayed by l points,

i.e., the data copy from time (in data points) l + 1 to time
Np + l. In a similar manner, this procedure is applied to the
test trial. To guarantee that data points greater than Np are not
tested, different from the training trial, data points exceeding
Np are padded with zeros.

X l =
�

X �
l , ONch×l

	
(7)

where X �
l ∈ R

Nch ×(Np−l) denotes the data copy from time l+1
to time Np . The augmented EEG trial is then projected onto
the subspace spanned by the reference signal.


X p = 
X P i (8)

Here P is an orthogonal projection matrix of the i -th class,
which is formed by [7], [14]:

P i = Q QT (9)

Q derives from the QR decomposition of the sine-cosine refer-
ence signal Y [6], [19], which corresponds to the i -th stimulus
frequency fi .

Y i = Q R (10)

Y i =
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T

, t = [1/ fs, · · · , Np/ fs]T (11)

where Nh is the number of harmonics, and fs is the sampling
rate.

For training and test trials, a further secondary augmented
EEG trial is constructed.

Xa = �
X, 
X p
�

(12)

Then, for training trials, two-dimensional linear discrimi-
nant analysis [20]–[22] is performed to seek projection direc-
tions to discriminate trials from all classes. The between-class

difference matrix Hb ∈ R
(l+1)Nch×2Nc Np and the within-class

difference matrix Hw ∈ R
(l+1)Nch×2Nt Np are defined as

Hb = 1√
Nc

[X̄
1
a − X̄

a
a, · · · , X̄

Nc
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a
a]
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(1)
, · · · , X(Nt )
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(Nt )
a ] (13)

where X̄
i

and X̄
(i)

denote the two-dimensional class centers of
the i -th class and the i -th sample, respectively. The superscript
a denotes all classes, and X̄

a
a is obtained by Eq. (14):

X̄
a
a = 1

Nt

Nt�
i=1

X (i)
a (14)

Then, the following Fisher criterion is used to derive the
projection directions

maximize
W

tr(W T SbW)

tr(W T SwW)
(15)

where the scatter matrices Sb and Sw have the form

Sb = Hb HT
b

Sw = Hw HT
w (16)

By utilizing the idempotent property of the projection
matrix, i.e., P2 = P , the Eq. (15) can be written as

maximize
W

tr
�

W T H �
b(Pb + I)H �T

b W
	

tr
�

W T H �
w(Pw + I)H �T

w W
	 (17)

where H �
b and H �

w are formed by 
X in Eq. (13). For the
projection matrices, Pb = ⊕Nc

i=1 P i and Pw = ⊕Nc
i=1 ⊕Nb

j=1 P i ,
where ⊕ denotes the direct sum and Nb denotes the number
of blocks.

C. Evaluation

1) Public Datasets: The performance of TDCA was ini-
tially evaluated on two public SSVEP-BCI datasets, i.e., the
Benchmark dataset [23] and the BETA dataset [24]. For the
Benchmark dataset, 35 subjects participated in six blocks of
a cued-spelling task on a 5 × 8 matrix of a virtual keyboard.
For the BETA dataset, 70 subjects participated in four blocks
of a cued-spelling task on a QWERTY virtual keyboard. Both
datasets contained 40 targets, including 10 digits, 26 letters of
the English alphabets, and four non-alphanumeric signs. Each
target was encoded by one of the stimulus frequencies ranging
from 8 Hz to 15.8 Hz (frequency interval: 0.2 Hz) using a
joint frequency and phase modulation (JFPM) method [2].
The stimulation duration was 5 s in the Benchmark dataset
and either 2 s or 3 s in the BETA dataset. Sixty-four channels
of EEG data were collected by SynAmps2 (Neuroscan Inc.)
at a sampling rate of 1000 Hz, which were then downsampled
to 250 Hz. The two datasets also differed in the experimental
condition, which was with and without electromagnetic shield-
ing for the Benchmark and the BETA dataset, respectively.

Four performance evaluations were conducted on the public
datasets. A) Performance evaluation on classical montage:
The performances of TDCA and ensemble TRCA were com-
pared in a classical montage [2], i.e., nine channels in the
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occipital region (Pz, PO3/4, PO5/6, POz, Oz, and O1/2).
B) Performance evaluation on other montages: In addition to
the classical montage, other configurations of montage were
evaluated for TDCA and ensemble TRCA. Here, five subsets
of montage configuration were evaluated, including central
occipital montage (Nch = 3, Oz, O1, and O2), classical
occipital montage (Nch = 9, Pz, POz, PO3/4, PO5/6, Oz and
O1/2), occipital montage (Nch = 21, Pz, P1/2, P3/4, P5/6,
P7/8, POz, PO3/4, PO5/6, PO7/8, Oz, O1/2, and CB1/2),
parietal-occipital montage (Nch = 30, CPz, CP1/2, CP3/4,
CP5/6, TP7/8, Pz, P1/2, P3/4, P5/6, P7/8, POz, PO3/4, PO5/6,
PO7/8, Oz, O1/2, and CB1/2), and all channels (Nch = 64).
C) Performance evaluation with insufficient training data: The
performance of TDCA and ensemble TRCA were evaluated
with a varying number of training blocks (Nb). Specifically,
for the Benchmark dataset Nb varied from 1 to 5, while for
the BETA dataset Nb varied from 1 to 3. D) Performance
comparison with other methods: In the same setting as A),
TDCA was compared with other competitive frequency recog-
nition methods including multi-stimulus TRCA [13], TRCA
with sine-cosine signal (TRCA-R) [14], similarity-constrained
TRCA (scTRCA) [15], and extended CCA [10]. For multiple
comparisons in B), C) and D), a repeated measures analysis of
variance (RMANOVA) was conducted. When sphericity was
violated assessed by Mauchly’s test of sphericity, the adjust-
ment of Greenhouse-Geisser correction was applied. When
a significant main effect was found ( p < .05), post hoc
comparisons of t-test were then performed with Bonferroni
correction. The statistical analyses were conducted in SPSS
Statistics 26 (IBM, Armonk, NY, USA).

In the performance evaluation, a k-fold cross-validation was
performed, i.e., k = 6 for the Benchmark dataset and k = 4
for the BETA dataset. Specifically, for each subject, one block
of EEG data was used as test set and the remaining data
were used as training set in a fold. As short data length
is critical for individually calibrated SSVEP-BCI, a sliding
window with data length Np (ranging from 0.1 s to 1 s with
an interval of 0.1 s) was employed to trim the epoch for
performance evaluation. The onset of the sliding window was
set at [ts + d, ts + d + Np ], and ts was the time point when
visual stimulation began. d is the latency estimated from the
dataset, with d = 140 ms for the Benchmark dataset [23]
and d = 130 ms for the BETA dataset [24]. The metrics of
accuracy and ITR were calculated for each data length. The
ITR in bits per min (bpm) is defined as [25]:

I T R = 60 · (log2 M + Plog2 P + (1 − P)log2
1 − P

M − 1
)/T

(18)

where M denotes the number of classes, P denotes the
accuracy, and T (in s) denotes the selection time including
gaze time and gaze shift time. A gaze shift time of 0.5 s is
used for analysis [18], [23].

A template matching approach was employed for frequency
recognition in the test set. Different from the scheme applied
in ensemble TRCA, more than one subspace (Nk ) was used
in TDCA. Empirically, Nk = 8, l = 5 for the Benchmark
dataset and Nk = 9, l = 3 for the BETA dataset. Filter bank

analysis was performed for all methods, where the number
of filter banks N f b = 5 and the combining weights were set
according to prior literature [12], [18]. The filtering procedure
was performed for each data length. The ensemble tech-
nique [12] was employed in TRCA and its derived methods,
i.e., msTRCA, TRCA-R, and scTRCA, termed as ensemble
TRCA, ensemble msTRCA, ensemble TRCA-R, and ensemble
scTRCA, respectively.

The profile of latent features for TDCA and ensemble
TRCA was further compared. To characterize the discrim-
inability of classes in the feature space, the R-squared statistics
of the correlation coefficients associated with the target and
nontarget stimuli were computed [12], [26] using the data of
the offline experiment. The R-squared statistics were compared
for TDCA and ensemble TRCA at data lengths from 0.1 s
to 1 s with an interval of 0.1 s. In addition, the activation
pattern [27] was explored to delineate the underlying spatial
pattern the model learned from the data. The activation pattern
is given by

A = �x W�−1
ŝ (19)

where W is the spatial filter. �x and � ŝ are the covariance of
the original EEG and the estimated source EEG, respectively.
The activation patterns from 64-channel EEG were computed
at a data length of 1 s. For TDCA, the activation patterns
corresponding to the original EEG (l = 0) were computed.
To ensure that the polarities of the activation pattern were
consistent, the activation patterns of each subject were nor-
malized by the value of the Oz channel. For ensemble TRCA,
as the common activation pattern is shared across stimuli [13],
[16], [17], the activation patterns were averaged across stimuli.
Then, the activation patterns were averaged across subjects for
both the Benchmark dataset and the BETA dataset.

2) Offline Experiments: An offline and online experiment
was conducted to validate the effectiveness of the proposed
method on new subjects. Twelve healthy subjects (six males
and six females) with a mean age of 23.1 ± 1.2 (mean ±
standard error, range from 18 to 31) participated in the study.
All subjects had normal or corrected-to-normal vision. The
experiment was approved by the institutional review board of
Tsinghua University (NO.20200020), and subjects provided
full written consent before the experiment.

For this study, a 40-target virtual speller was designed for
offline and online experiments. As illustrated in Figure 2,
40 targets on the virtual speller (i.e., 10 digits, 26 letters of the
English alphabet, and four symbols) were encoded as flickers
by JFPM [2]. The stimulus frequency of the target ranged
from 8 Hz to 15.8 Hz (frequency interval: 0.2 Hz) and the
initial phase ranged from 0 to 1.5 π (phase interval: 0.5 π).
The virtual speller was presented on a 24.5-inch LED monitor
(refresh rate: 60 Hz) using the sampled sinusoidal stimulation
method [28]. Note that the layout and encoding parameters
differed from the Benchmark and the BETA dataset.

In the offline experiment, subjects performed a cued-
spelling task and 64-channel EEG were recorded for offline
analysis. In line with the Benchmark dataset, the number of
blocks was set to six. In each block, subjects were instructed
to direct their attention to the center of each target, which



Fig. 2. Virtual keyboard for the 40-target SSVEP-BCI speller used in both the offline and online experiments. (A) Layout of a character input speller
with 10 digits, 26 letters of the English alphabet, and four non-alphanumeric signs. The topmost rectangle is designed to show online feedback.
(B) The tagged frequency and initial phase corresponding to each target are encoded by the joint frequency and phase modulation, respectively.

cued for 1 s and flickered for 3 s. During flickering, subjects
were asked to avoid blinking and body movement. The order
of cued targets was randomized. There was a break of 2 min
between two consecutive blocks to avoid visual fatigue.

3) Online Experiment: Following the offline experiment,
an online experiment was performed on a different day.
Specifically, each subject performed 10 blocks of the cued
spelling task, including five blocks of training data and five
blocks of test data. In each block, the target cued for 0.5 s
and flickered for 0.4 s. For the five blocks of test data,
a resulting feedback was presented on the speller after online
classification by TDCA during the 0.5-s cue time. The classical
montage of nine occipital channels (Pz, POz, PO3/4, PO5/6,
Oz and O1/2) were recorded and used to compute the online
classification accuracy and ITR.

The EEG data in the offline and online experiments were
acquired by a wireless amplifier (Neuracle, China) in an elec-
tromagnetic shielding room and triggers were synchronized by
a parallel port. An infinite impulse response (IIR) notch filter
was applied to remove interference from the power line, and
data were downsampled to 250 Hz for the offline and online
analyses. The procedure of performance evaluation was in
accord with the Benchmark dataset, except for the parameters
of Nk = 7, and l = 5. The visual presentation was developed
in MATLAB (MathWorks, Inc.) via Psychophysics Toolbox
Version 3 [29].

III. RESULTS

Figure 3 illustrates the performance of average classification
accuracy and ITR for TDCA and ensemble TRCA evalu-
ated with public datasets (A and B: the Benchmark dataset;
C and D: the BETA dataset). The result showed that TDCA
outperformed ensemble TRCA at all data lengths. The highest
ITR for TDCA was 244.34 ± 10.84 bpm at 0.5 s, while for
ensemble TRCA, the highest ITR was achieved at 0.5 s with
219.67 ± 12.47 bpm. Paired t-test revealed that the difference
for accuracy between TRCA and TDCA was statistically
significant (p < .05) for all data lengths, and for data lengths
greater than 0.1 s on the ITR. For a data length of 0.5 s,
the accuracies for TDCA and ensemble TRCA were 0.850 ±
0.027 and 0.794 ± 0.033, respectively, with a difference of
0.057 (p < .001). Specifically, TDCA was advantageous
over TRCA for 94.3% of the subjects, and the results for

Fig. 3. Average classification accuracy and ITR for TDCA and ensemble
TRCA on public datasets. (A) Accuracy on the Benchmark dataset.
(B) ITR on the Benchmark dataset. (C) Accuracy on the BETA dataset.
(D) ITR on the BETA dataset. Data lengths from 0.1 s to 1 s (with an
interval of 0.1 s) are used for evaluation. The asterisks indicate significant
differences between TDCA and ensemble TRCA (*p < .05, **p < .01,
***p < .001).

some representative subjects were detailed in the Supplemental
Table I. For a data length of 1 s, the accuracies for TDCA
and ensemble TRCA were 0.968 ± 0.010 and 0.936 ± 0.019,
respectively, with a difference of 0.032 (p = .002).

For the BETA dataset, TDCA outperformed ensemble
TRCA by a significant margin (c.f. Figure 3 C and D).
The highest ITRs for TDCA and ensemble TRCA were
174.88 ± 10.19 bpm (0.4 s) and 148.81 ± 10.13 bpm (0.4 s),
respectively. For data lengths exceeding 0.1 s, paired t-test
revealed that the difference between TDCA and ensemble
TRCA was statistically significant ( p < .05), both for the
accuracy and ITR. For a data length of 0.5 s, the accuracies
for TDCA and ensemble TRCA were 0.680 ± 0.028 and
0.609 ± 0.028, respectively, with a difference of 0.070
(p < .001). Specifically, TDCA was advantageous over
TRCA for 91.4% of the subjects, and the results for some
representative subjects were detailed in the Supplemental
Table II. For a data length of 1 s, the accuracies for TDCA
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and ensemble TRCA were 0.826 ± 0.019 and 0.764 ± 0.025,
respectively, with a difference of 0.063 (p < .001).

The effects of various montages on TDCA and ensem-
ble TRCA are illustrated in Figure 4 (A: the Benchmark
dataset; B: the BETA dataset). Here, the performance of
each method was measured by the maximum average ITR
across data lengths. As assessed by two-way (method × mon-
tage) repeated measures analysis of variance (RMANOVA),
the interaction between the method and montage was
statistically significant for both the Benchmark dataset,
F(2.399, 81.556) = 15.335, p < .001, Greenhouse-Geisser
corrected, and for the BETA dataset, F(2.905, 200.441) =
30.097, p < .001, Greenhouse-Geisser corrected. Paired
t-test revealed that TDCA significantly outperformed ensem-
ble TRCA on various montages (p < .001) for both datasets.
It is worth noting that in both TDCA and ensemble TRCA,
the classical montage was not the optimal montage that
yielded the highest ITR. In TDCA, the optimal montage was
parietal-occipital montage for the Benchmark dataset (TDCA:
280.47 ± 10.64 bpm; ensemble TRCA: 239.23 ± 14.52 bpm;
p < .001), and occipital montage for the BETA dataset
(TDCA: 197.72 ± 10.24 bpm; ensemble TRCA: 164.91 ±
10.91 bpm; p < .001). When the number of channels
exceeded that of the optimal montage, the ITR significantly
declined for TDCA and ensemble TRCA, especially for
ensemble TRCA.

Figure 5 illustrates the maximum average ITR of TDCA
and ensemble TRCA with a varying number of training
blocks. Two-way (method × block) RMANOVA identified
that there was a statistically significant main effect of blocks
for the Benchmark dataset, F(1.29, 43.859) = 324.455,

Fig. 4. Maximum average ITR with varying montage for TDCA and
ensemble TRCA on public datasets (A: the Benchmark dataset; B: the
BETA dataset). The number of channels is shown in ascending order,
i.e., Nch = 3 for central occipital montage, Nch = 9 for classical montage,
Nch = 21 for occipital montage, Nch = 30 for parietal-occipital montage,
Nch = 64 for all channels. The asterisks indicate significant differences
between TDCA and ensemble TRCA (*p < .05, **p < .01, ***p < .001).

Fig. 5. Maximum average ITR with varying number of training blocks
for TDCA and ensemble TRCA on public datasets (A: the Benchmark
dataset; B: the BETA dataset). The asterisks indicate significant dif-
ferences between TDCA and ensemble TRCA (*p < .05, **p < .01,
***p < .001).

Fig. 6. Maximum average ITR of various competing methods evaluated
on public datasets (A: the Benchmark dataset; B: the BETA dataset). The
asterisks indicate significant differences between TDCA and ensemble
TRCA (*p < .05, **p < .01, ***p < .001).

p < .001, Greenhouse-Geisser corrected, and for the BETA
dataset, F(1.067, 73.629) = 272.329, p < .001, Greenhouse-
Geisser corrected. With increasing number of training blocks,
the performances of TDCA and ensemble TRCA improved,
and TDCA consistently and significantly outperformed
ensemble TRCA on both datasets ( p < .001). For instance,
with insufficient training data of three blocks, the performance
on the Benchmark dataset was 219.7 ± 8.75 bpm for TDCA
and 191.64 ± 11.06 bpm for ensemble TRCA; on the BETA
dataset, the performance was 173.31 ± 10.13 bpm for TDCA
and 148.81 ± 10.11 bpm for ensemble TRCA.

The performance of various competing methods compared
with TDCA is illustrated in Figure 6 (A: the Benchmark
dataset; B: the BETA dataset). Here the performance of each
method was also characterized by the maximum average ITR
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TABLE I
COMPARISON OF TDCA AND ENSEMBLE TRCA ON THE INDIVIDUAL ITR IN THE ONLINE EXPERIMENT

Fig. 7. R-squared feature for TDCA and ensemble TRCA on the
data of the offline experiment. Data lengths from 0.2 s to 1 s (with an
interval of 0.1 s) are used for evaluation. The asterisks indicate significant
differences between TDCA and ensemble TRCA (*p < .05, **p < .01,
***p < .001).

across all data lengths. In accord with the comparison shown in
Figure 3, TDCA achieved the highest performance among all
compared methods, both with the Benchmark dataset and the
BETA dataset. One-way RMANOVA revealed that there was a
statistically significant difference between the compared meth-
ods on the Benchmark dataset, F(1.822, 61.939) = 22.408,
p < .001, Greenhouse-Geisser corrected, and on the BETA
dataset, F(3.365, 232.169) = 31.217, p < .001, Greenhouse-
Geisser corrected. Paired t-test with Bonferroni correction
found a statistically significant difference between TDCA and
each other method on both datasets (p < .001). The best
performing method among the other compared methods was
msTRCA for the Benchmark dataset, with a maximum average
ITR of 222.00 ± 12.68 bpm, and extended CCA for the BETA
dataset, with a maximum average ITR of 155.04 ± 7.94 bpm.

The profiles of the feature space are further presented in the
following. As illustrated in Figure 7, the R-squared in TDCA
significantly exceeded that in ensemble TRCA for data lengths
exceeding 0.1 s (p < .001). For instance, at a data length
of 1 s, R-squared increased from 0.454 ± 0.057 in ensemble
TRCA to 0.547 ± 0.052 in TDCA, which boosted classi-
fication accuracy and ITR [16], [17]. Additionally, Figure 8
depicts the average activation pattern of TDCA and ensemble
TRCA learned from public datasets, in which the first compo-
nent of the activation pattern was delineated. Here, the average
was performed across all classes and subjects for TRCA
and across all subjects for TDCA. Compared with ensemble
TRCA, visual inspection indicates that the activation pattern
of TDCA is more densely and symmetrically distributed in the
occipital region for both the Benchmark dataset (Figure 8B)
and the BETA dataset (Figure 8D). For ensemble TRCA,
scattered activations with high weights could be found in both
frontal and temporal regions, whereas for TDCA, activations
were suppressed in these regions.

For the offline experiment, the average classification accu-
racy and ITR of 12 subjects are illustrated in Figure 9.
Consistent with the result on public datasets, TDCA yielded
higher performance than ensemble TRCA on the accuracy and

Fig. 8. Average activation pattern for TDCA and ensemble TRCA on
public datasets (A and B: the benchmark dataset; C and D: the BETA
dataset). The activation patterns were computed and normalized from
64-channel EEG at a data length of 1 s.

ITR. Paired t-test found a statistically significant difference
(p < .01) for data lengths exceeding 0.1 s. At the data length
of 0.4 s, the highest ITRs were achieved by both methods,
i.e., 232.13 ± 20.05 bpm for TDCA and 200.82 ± 21.58 bpm
for ensemble TRCA, p < .001. At a data length of 1 s,
the accuracies for TDCA and ensemble TRCA were 0.917 ±
0.026 and 0.875 ± 0.037, respectively, with a difference
of 0.042 (p = .006).

Figure 10 illustrates the performance of TDCA compared
with ensemble TRCA in the online experiment. The average
online accuracy of TDCA was 0.82 ± 0.04, which significantly
exceeded the accuracy of ensemble TRCA, 0.72 ± 0.06
(p = .001). Consequently, TDCA significantly outperformed
ensemble TRCA regarding the online ITR (TDCA:
251.8 ± 17.9 bpm; ensemble TRCA: 207.4 ± 25.3 bpm;
p = 6.14 × 10−4). The details of the individual ITR are
summarized in Table I. At the individual level, the results
showed that TDCA yielded greater improvements for subjects
with poor BCI performance, e.g., S3 and S4. However, for
subjects with excellent BCI performance, e.g., S12 and S7,
the improvement was only marginal and a ceiling effect
was observed.

IV. DISCUSSION

This study proposes a task-discriminant component analy-
sis (TDCA) for individually calibrated SSVEP-BCI. We first
evaluated the performance of TDCA on two public datasets
and the results suggest that TDCA is superior over ensemble
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Fig. 9. Average classification accuracy (A) and ITR (B) for TDCA and
ensemble TRCA in the offline experiment. Data lengths from 0.1 s to 1 s
(with an interval of 0.1 s) are used for evaluation. The asterisks indicate
significant differences between TDCA and ensemble TRCA (*p < .05,
**p < .01, ***p < .001).

Fig. 10. Online classification accuracy (A) and ITR (B) for TDCA and
ensemble TRCA. The asterisks indicate significant differences between
TDCA and ensemble TRCA (*p < .05, **p < .01, ***p < .001).

TRCA for various data lengths, montage configurations and
the number of training blocks. More importantly, TDCA sig-
nificantly outperformed other competing frequency recognition
methods. To validate the performance of TDCA on new
subjects, an offline experiment was conducted with 12 subjects
and TDCA was implemented in a subsequent online experi-
ment. The results of both the offline and online experiments
suggest that TDCA consistently performs better than ensemble
TRCA. This is in line with the result of the two public
datasets and demonstrates the effectiveness of the proposed
method. The elevated performance of the accuracy and ITR is
attributable to the boosted discriminability of different classes
in the feature space, as indicated by a comparison of the
R-squared statistics in TDCA and ensemble TRCA. In more
detail, the increment in the discriminability is due in part to
the merit of spatiotemporal filters and their activation pattern.
The activation pattern of TDCA showcases its interpretability,
and implies a suppression of noise and an extraction of the
signal of interest as the underpinning for TDCA.

From a methodological perspective, TDCA is closely related
to ensemble TRCA and there are striking distinctions between
the two methods as well. First, when solving the general-
ized eigenvalue problem, ensemble TRCA only optimizes the
spatial filter, while TDCA optimizes the spatio-temporal filter
instead. Usage of the spatio-temporal filter is widely adopted
in other BCI paradigms, e.g., the motor imagery BCI to
address the issue of the unknown latencies from the onset of a
cue to the onset of task-related brain signals [30]–[33]. Similar
issues also affect SSVEP-BCI, where the latencies vary with
subjects [23], [34] and the location of targets [35]. Thus,
the subtlety in latency or the temporal information (apart from

filter bank [18]) should be taken into account in SSVEP-BCI,
which is neglected by ensemble TRCA and has received little
attention in the literature [36]. Second, the two methods share a
common ground in the form of the optimization objective and
models from both methods differ in the specificity to classes.
To identify both commonalities and differences, in TDCA,
we set l = 0 and use the data input from TRCA, and show the
relationship between TDCA and TRCA spatial filter, as pre-
sented in the Appendix. The comparison suggests that TDCA
and TRCA share a fundamental form, which is a problem of
maximizing the SNR similar to the formulation of maximum
signal fraction analysis [37]. Regarding the difference, TDCA
simultaneously optimizes the common spatial filter that max-
imizes the SNR of all stimulus frequencies, whereas TRCA
maximizes the SNR of each stimulus frequency in turn and
the spatial filter is specific to each target. As TDCA solves
the common spatial filter, the computation iteration is reduced
to 1/40 compared with ensemble TRCA and TDCA does not
require an ensemble technique. Third, prior information of the
stimulus frequency is utilized in TDCA, whereas there are no
priors in TRCA. The utilization of the stimulus frequency by
orthogonal projection facilitates classification, as evidenced by
previous studies [7], [14], [38].

The methodological improvement of TDCA is beneficial
in practical applications. First, the number of required chan-
nels and the corresponding cost can be reduced by using
TDCA. This study demonstrates that marked performance
improvements can be achieved by using a number of channels
exceeding the classical nine channels. However, in a real-world
BCI system, configuring more channels for acquisition would
substantially increase the associated cost, which decreases the
affordability of the system. Thus, this study uses the classical
nine channels for the online experiment. As shown in Figure 4,
the use of nine channels (i.e., classical montage) in TDCA
yielded a performance comparable to the use of 21 channels
in ensemble TRCA, both for the benchmark dataset (TDCA in
classical montage: 244.00 ± 13.21 bpm; ensemble TRCA in
occipital montage: 247.25 ± 13.45 bpm, p = .57) and for
the BETA dataset (TDCA in classical montage: 173.24 ±
10.13 bpm; ensemble TRCA in occipital montage: 164.91 ±
10.91 bpm, p = .05). This suggests that the application of
TDCA is cost-effective in terms of channel configuration.
Second, the number of calibration blocks could be decreased,
as shown in Figure 5. For instance, regarding the ITR on the
benchmark dataset, the use of two blocks of training data in
TDCA is comparable to four blocks of data in ensemble TRCA
(TDCA: 203.45 ± 7.28 bpm; ensemble TRCA: 206.84 ±
11.57 bpm; p = .24); the use of three blocks of training data in
TDCA is comparable to five blocks of data in ensemble TRCA
(TDCA: 219.66 ± 8.75 bpm; ensemble TRCA: 219.67 ±
12.43 bpm; p = .99). This suggests that TDCA is conducive
in mitigating the calibration burden, which is time-consuming
and impairs the user experience by fatigue. Third, the proposed
method is promising for the enhancement of dry electrode
based systems. Currently, dry electrode based systems are
inferior in performance compared with gel based systems
because of the system noise from measurement [39], [40].
As the dry electrode based system is easy to use and preferable
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in practical applications, the enhancement of this system is
important and TDCA has significant implications in boosting
performance of this system. As validated by the online experi-
ment, TDCA is computationally tractable for single-trial real-
time decoding in implementation. For instance, for the 1-s
data length on the BETA dataset of 70 subjects, the average
computational cost was 31.8 ms on a desktop computer with a
3.6 GHz CPU (32 GB RAM). Yet, the computational overhead
of TDCA is slightly higher than that of ensemble TRCA due to
matrix multiplication in the projection operation, as compared
in the Supplemental Table III.

The present study proposes TDCA as a proof of concept,
which can be tailored by future studies to meet the demands
of real-world applications. For applications that require robust
control (e.g., BCI control of a drone), a dynamic stopping
strategy [41] could be adopted to increase the classification
accuracy via decisions of rejection. For applications where
synchronization is not required or satisfying, TDCA could be
integrated with an asynchronous strategy [42] to discriminate
between the intentional control state and the non-control
state. In addition, TDCA has the potential to be employed
in other SSVEP-BCI paradigms, e.g., for flexible spatial
information decoding [43].

V. CONCLUSION

This study proposes a novel frequency recognition method,
i.e., task-discriminant component analysis (TDCA) to improve
the performance of SSVEP-BCI. In TDCA, common spatio-
temporal filters are learned from the data in a discriminative
manner. Thus, there is no need for the model to learn the
projection direction class by class, and different from ensemble
TRCA, no ensemble technique is needed. The effectiveness of
TDCA is validated by extensive validations on two benchmark
datasets, an offline experiment, and an online experiment. The
result of these validations demonstrates that TDCA is superior
over ensemble TRCA and other competing methods. The
present study lays a foundation for methodological extensions
of TDCA and indicates promising potential applications in
high-speed brain spellers.

APPENDIX

RELATIONSHIP BETWEEN TDCA AND

TRCA SPATIAL FILTERS

Suppose the SSVEP observations X have the following
signal model:

X = S + N (20)

where S ∈ R
Nch ×Np is a multichannel deterministic signal, and

N ∈ R
Nch ×Np is random noise. The scatter matrix in Eq. (16)

can be reformulated as:
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where Si and X i denote the S and X associated with the
i -th stimulus frequency, respectively. The between-class scat-
ter matrix has the form of
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Assume that the deterministic signals are uncorrelated,
i.e., Si S j = 0, i �= j . Then,
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where α is a scaling parameter. In parallel, the within-class
scatter matrix Sw has the form of

Sw =
�

i

N NT = β N NT (24)

where β is a scaling parameter. Thus the Eq. (15) can be
written as

maximize
W
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The optimization objective of TRCA has the form of [44]

maximize
W

tr
�
W T Si ST

i W
�

tr
�
W T N NT W

� (26)

The comparison indicates that the TDCA spatial filter simul-
taneously maximizes the SNR of all stimulus frequencies,
while the TRCA spatial filter maximizes the SNR of each
stimulus frequency in sequence.
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I. SUPPLEMENTAL MATERIAL

TABLE I
INDIVIDUAL ACCURACY OF ENSEMBLE TRCA AND TDCA FOR 15 REPRESENTATIVE SUBJECTS

FROM THE BENCHMARK DATASET (AT 0.5 S, IN PERCENT).

Index Subject ID Ensemble TRCA TDCA

1 33 41.66 59.58
2 8 72.08 87.92
3 21 68.75 83.75
4 19 15.42 29.58
5 17 82.50 93.33
6 15 65 75.83
7 20 72.92 83.33
8 30 79.17 89.58
9 9 69.58 78.33

10 11 29.17 37.92
11 6 80.42 88.75
12 29 64.58 72.5
13 35 52.5 60.42
14 16 76.67 83.33
15 13 87.08 92.5

TABLE II
INDIVIDUAL ACCURACY OF ENSEMBLE TRCA AND TDCA FOR 15 REPRESENTATIVE SUBJECTS

FROM THE BETA DATASET (AT 0.5 S, IN PERCENT).

Index Subject ID Ensemble TRCA TDCA

1 56 43.75 89.38
2 20 45 68.13
3 29 55 71.88
4 46 49.38 65.63
5 17 19.38 35
6 39 51.88 66.25
7 32 23.75 38.13
8 38 8.13 22.5
9 51 46.25 60

10 45 53.13 66.25
11 25 63.13 76.25
12 33 34.38 46.88
13 41 30.63 42.5
14 64 58.13 70
15 10 44.38 55.63

TABLE III
COMPARISON OF ENSEMBLE TRCA AND TDCA ON AVERAGE COMPUTATION TIME

FOR VARIOUS DATA LENGTHS (EVALUATED ON THE BETA DATASET)

Data length (s) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recognition Time (ms) Ensemble TRCA 3.2 4.3 5.9 10 12.3 14.2 16.3 17.8 25.9 27.9
TDCA 4.4 7.6 10.7 13.3 16.6 19.2 22.5 24.8 29 31.9




