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Abstract—Objective: The steady-state visual evoked
potential based brain-computer interface (SSVEP-BCI) im-
plemented in dry electrodes is a promising paradigm
for alternative and augmentative communication in real-
world applications. To improve its performance and re-
duce the calibration effort for dry-electrode systems, we
utilize cross-device transfer learning by exploiting auxil-
iary individual wet-electrode electroencephalogram (EEG).
Methods: We proposed a novel transfer learning framework
named ALign and Pool for EEG Headset domain Adaptation
(ALPHA), which aligns the spatial pattern and the covari-
ance for domain adaptation. To evaluate its efficacy, 75
subjects performed an experiment of 2 sessions involving a
12-target SSVEP-BCI task. Results: ALPHA significantly
outperformed a baseline approach (canonical correlation
analysis, CCA) and two competing transfer learning ap-
proaches (transfer template CCA, ttCCA and least square
transformation, LST) in two transfer directions. When trans-
ferring from wet to dry EEG headsets, ALPHA significantly
outperformed the fully-calibrated approach of task-related
component analysis (TRCA). Conclusion: ALPHA advances
the frontier of recalibration-free cross-device transfer learn-
ing for SSVEP-BCIs and boosts the performance of dry
electrode based systems. Significance: ALPHA has
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methodological and practical implications and pushes the
boundary of dry electrode based SSVEP-BCI toward real-
world applications.

Index Terms—Brain-computer interface, steady-state vi-
sual evoked potential, electroencephalography, transfer
learning, domain adaptation, subspace learning.

I. INTRODUCTION

THE brain-computer interface (BCI) provides an alternative
pathway between the brain and external devices, and this

pathway obviates the need for the involvement of the peripheral
nervous system by leveraging brain signals from sensation, per-
ception and higher-level cognition [1], [2]. Compared with its in-
vasive counterpart, noninvasive BCI boasts its safety and ease of
use, which has the potential for wide applicability in able-bodied
users. Among the noninvasive paradigms, steady-state visual
evoked potential based BCI (SSVEP-BCI) has received increas-
ing attention and constitutes one of the dominant paradigms to
date [3]. Physiologically, SSVEP is elicited by periodic visual
stimuli, e.g., flickers in a visual speller, and its frequency tagging
attribute provides it with a relatively high signal-to-noise ratio
(SNR). The merit of a high SNR makes it possible to develop
a BCI system with a high information transfer rate (ITR) for
practical applications. Over the past decades, continuous efforts
have been devoted toward the goal, and one line of research is
the development of frequency recognition methods [4]–[8]. For
example, the training-free filter bank canonical correlation anal-
ysis (FBCCA) method [6] and the training-based task-related
component analysis (TRCA) method [8] have led to remarkable
improvements in ITR.

In parallel, another line of research works on the instru-
mentation and implementation of SSVEP-BCI for real-world
applications, especially wearable systems based on dry EEG
headsets [9]–[12]. For example, a single-channel dry EEG head-
set was developed by NeuroSky Inc. This consumer-grade user-
friendly SSVEP-BCI system could identify 4 targets with an
ITR of 34.3 bits per minute (bpm) [9]. In an industry monitoring
task, a low-cost wearable and wireless SSVEP-BCI system was
integrated into augmented reality (AR) glasses, which could
achieve an average accuracy of 81.1% at 2 s using single-channel
EEG [12]. In these applications, since it removes the hassle of the
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gel setup by professionals and gel cleaning after use, the dry EEG
headset would be better suited for the general public in daily use.
However, probably due to its high impedance, unstable contact
and susceptibility to artifacts, the SNR and ITR metrics from the
dry EEG headset are generally lower than those from the wet
EEG headset [10], [11]. In practical BCI applications, e.g., a BCI
speller, the degradation in performance constitutes a standing
problem for its widespread use. This raises the question of how
to enhance the performance of dry electrode based SSVEP-BCI
systems in practical applications.

Transfer learning [13], or specifically domain adaptation [13]
has the potential to address the issue by boosting the system
performance with auxiliary source data. As a special case of
general transfer learning, domain adaptation transfers knowl-
edge across different domains within the same task by means of
labeled data in the source domain and unlabeled data in the target
domain [13]. The concept of transfer learning has been explored
in SSVEP-BCI in recent years [14]–[21]. In cross-subject trans-
fer learning, subjects are assumed to share a common SSVEP
template [14], embedding [17], [20], [21] or spatial filter [16].
SSVEPs from the source subjects are exploited in this fashion to
enhance the performance of a target subject. For example, in the
transfer template canonical correlation analysis (ttCCA) [14],
the averaged EEG from the source subjects were used as the
SSVEP template, but the difference between the source subjects
and target subjects was neglected. This difference was taken into
account in the least square transformation (LST) method, which
minimized the error between the target SSVEP and weighted
source SSVEPs [17], [20], [21]. In the cross-stimulus scenario,
the spatial filter was transferred across stimuli [19], [20], or
a target SSVEP template was manually synthesized [15] to
reduce the number of calibration trials. In cross-device transfer
learning, the SSVEP data from the source EEG headset are
used to facilitate calibration for the target EEG headset [18]. To
our knowledge, the existing literature in this area [18], [21] is
relatively scarce so far compared with the other transfer learning
scenarios. In the prior work of a recalibration-free setting, the
LST method was employed to transform the source SSVEP to
the target domain, but there still existed a large gap between
the performance of the fully-calibrated method and the transfer
learning method [18].

To bridge this gap, we utilize cross-device transfer learning
to facilitate the performance of dry electrode based SSVEP-BCI
by means of auxiliary data from the same subject. We use the
wet-electrode EEG as the auxiliary data considering that it is
a gold standard in the laboratory setting and it generally has
a higher SNR [10], [11], which possibly yields more benefits
in transfer learning. The goal of the SSVEP-BCI system is
recalibration-free [18], where there is no need for subjects to
recalibrate the system after wearing a dry EEG headset. To
fulfill this goal, we propose a novel transfer learning frame-
work in this work. Compared with the conventional pipeline
of frequency recognition, the proposed framework features an
intermediate step of subspace alignment for domain adaptation,
which minimizes the discrepancy between the source domains
and target domains. To harness the benefit of auxiliary data
and avoid negative transfer [13], we propose new approaches

Fig. 1. The virtual dialing keyboard for the 12-target SSVEP-BCI
speller. (A) The layout of a dialing keyboard with 10 digits (0–9) and
2 punctuations (* and #). (B) The stimulus frequency and initial phase
corresponding to each target.

intended for SSVEP-BCI to align the statistics of spatial patterns
in tandem with covariance. A novel subspace pooling strategy is
also proposed to aggregate the discriminative detection statistics
from more than the conventional first subspace. Since it aligns
and pools as its crucial steps, the proposed framework is named
ALign and Pool for EEG Headset domain Adaptation (ALPHA)
in the present study. The feasibility and efficacy of ALPHA are
demonstrated by experiments with a large number of subjects.

II. MATERIALS AND METHODS

A. Boosting Protocol for a Dry Electrode Based System

1) Subjects: Seventy-five healthy volunteers (49 males and
26 females, mean age 30± 0.91 years) participated in this study.
Only one subject was left-handed and the rest were right-handed.
49 subjects also took part in the study in [22]. All the subjects
had a normal or corrected-to-normal vision. This study was ap-
proved by the institutional review board of Tsinghua University
(NO.20200020), and subjects gave written informed consent
before the experiment.

2) EEG Headsets: Two typical types of EEG headsets, i.e.,
EEG headsets with dry or wet electrodes were adopted in the
study. The details of the dry multipin electrodes can be found
in [11]. The wet-electrode headset used conventional Ag/AgCl
electrodes. Both headsets were designated for SSVEP-BCI
tasks, and the electrodes were located at the 8 channels of
the international 10-20 system, i.e., POz/Oz, PO3/4, PO5/6,
O1/O2, together with reference and ground electrodes on the
forehead. A wireless amplifier (Neuracle, China) was mounted
on both of the headsets and the data were sampled at 1000 Hz.
Thus, the difference between the two EEG headset systems lies
in the type of electrodes. Considering the long-term ease of
use in real-world applications, the dry-electrode headset was
used as a primary headset. The wet-electrode headset was used
as an auxiliary headset to augment the performance of the
dry-electrode headset. Thus, for each subject, the wet-electrode
headset was employed prior to the dry-electrode headset. Before
the experiment, the impedance was kept below 200 kΩ and
20 kΩ for dry and wet electrodes, respectively.

3) Experimental Procedure: This study designed a cued
spelling SSVEP-BCI experiment. Twelve characters, including
ten digits (0 – 9) and 2 punctuations (* and #), were presented on
the screen to simulate a 12-target dialing keyboard (Fig. 1(A)).
Each target on the keyboard had a dimension of 288 × 288 pixels



LIU et al.: ALIGN AND POOL FOR EEG HEADSET DOMAIN ADAPTATION (ALPHA) TO FACILITATE DRY ELECTRODE BASED SSVEP-BCI 797

(8.5◦ × 8.5◦) and it was encoded by joint frequency and phase
modulation (JFPM) [7] to present visual flickers. As illustrated
in Fig. 1(B), the stimulus frequency of the flicker ranged from
9.25 Hz to 14.75 Hz (frequency interval: 0.5 Hz) and the initial
phase ranged from 0 to 1.5 π (phase interval: 0.5 π). Each
stimulus was modulated by a sampled sinusoidal stimulation
method [23] at a refresh rate of 60 Hz. The visual stimuli were
presented on a 27-inch LCD monitor by MATLAB (MathWorks,
Inc.) via Psychophysics Toolbox Version 3 [24].

In the SSVEP-BCI experiment, each subject took part in a
session of the wet-electrode headset and a subsequent session
of the dry-electrode headset on a single day. To eliminate con-
founding variables, the tasks of the two sessions were identical,
and the electrode placement was maintained as close as possible
when switching from wet-electrode headset to dry-electrode
headset. In each session, subjects performed 10 blocks of the
experiment, and there was a break between two consecutive
blocks to mitigate visual fatigue. There were 12 trials in a block,
in which each trial corresponded to a target, and the order of
trials was randomized. At the beginning of each trial, a red square
covering the target was prompted, and all targets started to flicker
simultaneously. The subjects were asked to direct their attention
to the prompted target and avoid eyeblink during flickering. The
flickering of visual stimulation lasted 2 s and there was a 1-s
rest time for gaze shift. Using the portable amplifier, the event
triggers sent from the computer were synchronized to the EEG
data as an event channel. The recorded data were resampled to
250 Hz and preprocessed with an infinite impulse response (IIR)
notch filter to remove the power line interference.

B. Align and Pool for EEG Headset Domain Adaptation

1) Problem Definition: The notations and descriptions used
in the paper are summarized in Table I. Given a labeled source
domainDs = {Xs,Ys} = {(X(i)

s , y
(i)
s )}, i = 1, . . . , Ns and an

unlabeled target domain Dt = {Xt} = {X(i)
t }, i = 1, . . . , Nt,

the problem of cross-device transfer learning is to exploit aux-
iliary EEG data from Xs to decode trials from Xt. In this
context, Ds and Dt come from two EEG headsets (Ds �= Dt)
and satisfy Xs �= Xt,Ys = Yt, |Y| = Nc where | · | denotes the
cardinality of a set. The data samples Xs ∈ RNch×Np ,Xt ∈
RNch×Np are multi-channel EEG trials from the same subject.
For a practical SSVEP-BCI application, it is often the case that
Ns = Nc ×Nb, Nt = 1 for the purpose of zero training inDt, in
which the model learned from Ds is used to classify single-trial
target data in a recalibration-free manner.

In the conventional scheme of SSVEP frequency recognition
(Ds = Dt), a spatial filter w is constructed from the training
data, and the grand average trials X̄ of a subject are used
as SSVEP template. Both the SSVEP template X̄ and a test
trial Xt are then weighted by w to yield the spatially filtered
one-dimensional embeddings wT X̄ and wTXt. Finally a sim-
ilarity measure of Pearson’s correlation is performed on the
embeddings to infer the stimulus frequencies with the largest
correlation coefficient. For the problem of cross-device transfer
learning, since w and X̄ lie in Ds and Xt lies in Dt (Ds �= Dt),
the existing domain gap would inevitably introduce bias in the

TABLE I
TABLE OF NOTATIONS

similarity measure. As a result, the bias would deteriorate the
decoding performance in classification accuracy. To address this
issue, we propose the ALign and Pool for Headset domain
Adaptation (ALPHA) framework in the present study. As illus-
trated in Fig. 2, the proposed framework subsumes 3 key com-
ponents, i.e., subspace decomposition, subspace alignment and
subspace pooling. The details of each component are described
as follows.

2) Subspace Decomposition: For the step of subspace de-
composition in ALPHA, we perform the subspace decompo-
sition in Ds and Dt simultaneously and obtain its associated
spatial filters. Inspired by extended CCA [5] and m-extended
CCA [7], we utilized canonical correlation analysis (CCA) [4],
[25] as the main operation for feature extraction. Different from
the conventional approaches that use only the largest subspace,
here multiple subspaces are utilized after the CCA operation.
The optimization objective of CCA is defined as [26]

argmax
U ,V

tr
(
UTXY TV

)
s.t. UTXY TV = Λ

UTXXTU = I, V TY Y TV = I (1)
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Fig. 2. A schematic diagram of the ALPHA framework. Each color in the circle represents a different type of data, e.g., purple denotes test data
or samples from the target domain; magenta denotes samples from the source domain; and green denotes the sine-cosine reference signal. The
ALPHA subsumes 3 key steps, i.e., subspace decomposition, subspace alignment and subspace pooling. Subspace decomposition is performed
on each pair of input data and the spatial filters are then obtained. The subspace alignment encompasses two parts, i.e., the ASP (align spatial
pattern) and the AC (align covariance). In the illustration of ASP, the spatial pattern of the target domain is aligned to that of the source domain
by a mathematical rotation. In the illustration of AC, the covariance of the target domain is aligned to that of the source domain by whitening
and coloring. Subspace pooling aggregates the correlation coefficient from each pair of embeddings and weights the correlation coefficients from
multiple subspaces to form detection statistics. (Best view in color).

where X is the EEG data and Y is a reference signal corre-
sponding to the query stimulus frequency f . The reference signal
can be a sine-cosine reference signal Y sc or a source SSVEP
template X̄s. The sine-cosine reference signal Y sc is formed
as [4], [25].

Y sc =

⎡
⎢⎢⎢⎢⎢⎣

sin
(
2πftT

)
cos

(
2πftT

)
...

sin
(
2πNhft

T
)

cos
(
2πNhft

T
)

⎤
⎥⎥⎥⎥⎥⎦ , t = [1/fs, . . . , Np/fs]

T (2)

In ALPHA, we use CCA subspace decomposition to obtain 4 sets
of spatial filters. The first 2 sets of spatial filters are associated
with the sine-cosine reference signal Y sc. In Dt, an intersection
subspace between the target trialXt andY sc can be determined,
i.e., WX = U , when X = Xt and Y = Y sc in Eq. (1). In Ds,
an intersection subspace between the source SSVEP template
X̄s and Y sc can be determined, i.e., W X̄ = U , when X =
X̄s and Y = Y sc. Note that the first two sets of spatial filters
WX and W X̄ are derived from the same sine-cosine reference.
Thus the difference between Dt and Ds may be reflected in the
difference between WX and W X̄ , which makes it possible to
compensate for the domain gap introduced from switching EEG
headsets.

In parallel, the 3rd and 4th sets of spatial filters are asso-
ciated with the source SSVEP template X̄s. Likewise, in Ds

an intersection subspace between the single-trial source EEG
data Xs and X̄s can be determined, i.e., WXsX̄ = U , when
X = Xs and Y = X̄s. In Dt, an intersection subspace be-
tween the target EEG data Xt and X̄s can be determined, i.e.,
WXtX̄ = U , when X = Xt and Y = X̄s. As indicated by
a previous study [27], the 3rd set of spatial filters WXsX̄ is
mathematically equivalent to the TRCA spatial filter [8].

Furthermore, we introduce a set of discriminant spatial filters
to SSVEP-BCI frequency recognition using two-dimensional
linear discriminant analysis (LDA) [28], [29]. The optimization
objective of the spatial filter is known as the Fisher criterion

maximize
W

tr(W TSbW )

tr(W TSwW )
(3)

The between-class scatter matrix Sb and the within-class scatter
matrix Sw are defined as

Sb = HbH
T
b

Sw = HwH
T
w (4)

whereHb ∈ RNch×NcNp andHw ∈ RNch×NsNp have the form

Hb =
1√
Nc

[X̄
1 − X̄

a
, . . . , X̄

Nc − X̄
a
]

Hw =
1√
Ns

[X(1) − X̄
(1)

, . . . ,X(Ns) − X̄
(Ns)] (5)
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The superscript a denotes all classes. Note that the EEG data
are from Ds, and the subscript here is omitted. The set of spatial
filters obtained from LDA is denoted as W̃ .

3) Subspace Alignment: After the spatial filters are ob-
tained, the next step in ALPHA is to perform subspace align-
ment. The goal of subspace alignment is to align Ds and Dt to
the same subspace to bridge the gap between the two domains.
Two types of subspace alignment are employed in the study.

Align spatial pattern (ASP). For SSVEP-BCI frequency
recognition, we propose a novel alignment method to align the
spatial patterns of SSVEP from Ds and Dt. For the set of CCA
spatial filters W X̄ and WX , the corresponding spatial pattern
in Ds and Dt can be obtained by [30]

As = W−T
X̄

At = W−T
X

(6)

Here, we assume that Ds and Dt should share the same underly-
ing spatial pattern after a rotation. Thus, the ASP method seeks
an orthogonal transformation matrix P to the estimated spatial
pattern, which leads to the following optimization problem.

minimize
P

∥∥As −AtP
T
∥∥2
F

s.t. PP T = I

(7)

This is a typical Procrustes problem in mathematics [31] and the
solution is obtained by

P = UV T (8)

where U and V are the left and right singular vectors of AT
s At.

Then, the transformed spatial filters for WX has the form

WASP
X̄ = WXP T (9)

In a similar vein, the spatial pattern corresponding to WXsX̄

and WXtX̄ can be aligned. In this study, the spatial pattern of
WXtX̄ is rotated to that of WXsX̄ via the ASP, and the details
are presented in the Supplementary Material.

Align covariance (AC). Apart from the shift in spatial pattern,
we assume that the domain gap also lies in the covariance shift.
To mitigate the covariance shift, we should align the covariance
between the distribution of Ds and Dt. Here, we used a cor-
relation alignment (CORAL) [32] based method to fulfill the
goal. CORAL finds a linear transformation Q to minimize the
distance between the second-order statistics of Ds and Dt [32].

minimize
Q

||QTCsQ−Ct||2F (10)

Different from the original CORAL, in ALPHA the covariance
matrices Cs and Ct for Ds and Dt are obtained by

Ci
s =

1

NbNp − 1
Xi

mCNbNp
XiT

m , i = 1, . . . , Nc

Ct =
1

Np − 1
XtCNp

XT
t (11)

where Cn = I− 1
n11

T is a centering matrix, and Xi
m is the

concatenation of trials Xs in Ci. Eq. (10) can be solved in a

closed form [32], and it has an equivalent yet efficient solution

Q = C
− 1

2
s C

1
2
t (12)

For the CCA spatial filter obtained from the last section, after
AC it has the form

WAC
X = QWX (13)

In a similar vein, by aligning Dt to Ds the LDA spatial filter is
given by

W̃
AC

XsX̄
= Q−1W̃XsX̄ (14)

4) Subspace Pooling: After Ds and Dt are aligned to the
same domain, a similarity measure procedure is performed
to aggregate the similarities to a detection statistic. Different
from the conventional approach, here we use more than one
subspace, and the correlation coefficients of the subspace are
pooled by weighting. Specifically, the correlation coefficients
of the subspace are obtained by

R =

5∑
i=1

sign(Ri)�Ri �Ri (15)

where � is the Hadamard product. R1 is given by the first Nk

canonical correlation coefficient in Eq. (1) when X = Xt and
Y = Y sc, and the remaining is given by

Rk
2 = corr(W T

X[k]Xt,W
ACT

X[k] X̄s), k = 1, . . . , Nk.

Rk
3 = corr(WASPT

X̄[k] Xt,W
T
X̄[k]X̄s), k = 1, . . . , Nk.

Rk
4 = corr(WASPT

XsX̄[k]Xt,W
T
XsX̄[k]X̄s), k = 1, . . . , Nk.

Rk
5 = corr(W̃

ACT

XsX̄[k]Xt, W̃
T

XsX̄[k]X̄s), k = 1, . . . , Nk.

(16)

where Nk is the number of subspaces used for pooling and is
set to 3 in the study. The first part and the second part in each
correlation operation in Eq. (16) are the test embedding and
template embedding, respectively.

We learn an optimal projection direction wρ ∈ RNk×1 from
the data in Ds. Specifically, a leave-one-block-out cross valida-
tion is conducted on the source domain EEG data, yielding a
source Rs ∈ RNs×Nk for each class in Eq. (15). Then, for each
class, wρ is obtained by maximizing the L2 norm of the target
correlation coefficients, which can be formulated as

maximize
wρ

||HRswρ||2F

s.t. wT
ρ wρ = 1

(17)

where H ∈ RNb×Ns is a selecting matrix that satisfies

Hi,j =

{
1, yi ∈ Cm, j = Nc(i− 1) +m
0, otherwise

(18)

Eq. (17) can be cast into a Rayleigh quotient, and wρ is com-
posed of the eigenvector corresponding to the largest eigenvalue
of RT

s H
THRs.

Inspired by the CCARV [33], the weighted correlation coeffi-
cients corresponding to the nontarget are averaged to form Rnt.
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Finally the decision criterion for frequency recognition is based
on the statistics after weighting and variation reduction.

Ci = argmax
i

(Ri −Ri
nt)w

i
ρ (19)

C. Evaluation

1) Data Evaluation: The signal profiles of the EEG signals
from the two headsets were qualitatively and quantitatively com-
pared. To visually display the profile in the temporal and spectral
domains, a grand average was applied to the EEG data. The
visual latency was estimated from the stimulus frequencies in the
first row of the keyboard [34]. The SNR statistics, including the
narrow-band SNR and wide-band SNR, were calculated [35]. In
addition, we summarized the impedance value of the recording
electrodes during the data acquisition.

2) Performance Evaluation: According to a previous
study [18], two scenarios of cross-device transfer learning,
i.e., from wet EEG headset to dry EEG headset (wet to dry),
and from dry EEG headset to wet EEG headset (dry to wet),
were considered. The performance of two competing transfer
learning based methods (LST [18] and ttCCA [14]) and a base-
line training-free method (CCA [4], [6]) were compared with
ALPHA. The single-trial SSVEP data were latency-corrected
by d ms [6]–[8], and the latency d was estimated based on the
data [34]. Data lengths from 0.2 s to 2 s with an interval of
0.2 s were used for evaluation. The classification accuracy and
simulated online ITR were calculated [1], [18]. A gaze shift
time of 1 s was used to calculate the ITR. Note that ttCCA was
designed for cross-subject transfer learning [14], and here, we
evaluated it on cross-device transfer learning.

We then compared the performance of ALPHA with a state-
of-the-art fully-calibrated method, i.e., task-related component
analysis (TRCA) [8]. For TRCA the fully-calibrated setting,
the recalibration-free setting, and the hybrid calibration set-
ting were evaluated, while for ALPHA the recalibration-free
setting and the hybrid calibrated setting were evaluated. In the
fully-calibrated setting, a k-fold cross validation was performed
by leaving one block out in each fold (k = Nb) in the target
domain. In the recalibration-free setting, the model (ALPHA
or TRCA) was trained from the source domain and tested on
the target domain. In the hybrid calibration setting, a k-fold
leave-one-block-out cross validation on the target domain was
performed, in which we trained the model (ALPHA or TRCA)
by simultaneously utilizing EEG from the source domain and
the training set of the target domain and tested the model on the
test set of the target domain. In implementation, we trained two
models, i.e., the model from source domain EEG and from target
domain EEG, and then the detection statistics (i.e., correlation
coefficients) of each model were added. In each of the settings,
the classification accuracy and ITR were obtained. For the
wet-to-dry scenario, we further evaluated the performance of
the two methods with varying parameters of calibration blocks.
For the recalibration-free ALPHA, the number of source blocks
varied from 1 to Nb. For the fully-calibrated TRCA, the number
of training blocks varied from 1 to Nb − 1. For each parameter,
we measured the performance by the maximum ITR across

time after averaging the ITR values by block. The CCA was
evaluated on the target domain, and its performance was used as a
baseline.

We further validate the efficacy of ALPHA in a simulation
manner. To simulate the scenario of exploiting high-SNR data
(wet-electrode SSVEP) to augment the low-SNR data (dry-
electrode SSVEP), we conducted a simulation experiment as
follows. For each subject, we split the data from the 1st session
(i.e., using a wet EEG headset) into source data (block 1 to 5) and
target data (block 6 to 10). Then, we added drop-out instability
and random noise with baseline drift [36] to the target data. This
is in an effort to mimic the dry-electrode EEG, which is em-
pirically found to suffer from contact instabilities and artifacts.
Specifically, 2 of the 8 channels were zeroed out, and Gaussian
white noise with a baseline drift n(t) ∼ N (μ, 1), μ = 1 was
added to the remaining channels similar to [36]. To evaluate
the performance of ALPHA on the contaminated simulation
data, two transfer learning methods (ttCCA and LST) and a
training-free baseline method (CCA) were compared.

In addition, we conducted a follow-up study to examine
the effectiveness of ALPHA on the scenario of cross-day and
cross-device transfer learning. The details of the experimental
procedure are presented in the Supplementary Material.

3) Feature Evaluation: In this part, the efficacy of features
in ALPHA was evaluated. First, the ITR obtained from using
only 1 of the 5 correlation coefficients R in Eq. (15) was com-
pared with the original result. Second, the ITR with a varying
number of subspaces used in Eq. (16) was compared with the
conventional approach of using a single largest subspace. Third,
the effect of subspace alignment (ASP and AC) was explored.
We initially compared the classification accuracy by removing
the subspace alignment step in ALPHA. To characterize the
change in the discriminability of SSVEP induced by subspace
alignment, an R-squared statistic of the correlation coefficient
was used [8], [37]. The R-squared of each correlation coefficient
associated with the target and nontarget stimuli in Eq. (16) before
and after subspace alignment was compared. Subsequently, a
t-distributed stochastic neighbor embedding (t-SNE) [38] was
applied to project W T

X[1]Xt,W
ACT

X[1] X̄s and W T
X[1]X̄s in

Eq. (16) to a low dimensional space to visualize the embed-
dings. The t-SNE was also applied to W T

X̄[1]X̄s,W
ASPT

X̄[1] Xt

and W T
X̄[1]Xt in Eq. (16). Finally the wide-band SNRs of

WASPT

X̄[1] Xt and W T
X̄[1]Xt were compared to unveil the effect

of subspace alignment on the embedding’s SNR.
4) Filter Bank Analysis: Filter bank analysis [6] is an effec-

tive temporal filtering method in SSVEP-BCI, which is generally
orthogonal to most spatial filtering methods and could further
enhance the performance. In the present study, each of the
aforementioned methods was evaluated without the filter bank
analysis (w/o FB) and with the filter bank analysis (w/ FB). The
number of filter banks was set to 5 [8], [35], and the weight
for each filter bank was set according to [6]. In ALPHA, the R
values corresponding to different filter banks were weighted and
summed before learning the coefficients in Eq. (17). Note that
the ensemble method [8] was used for TRCA both w/ and w/o
FB.
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Fig. 3. Temporal (left panel) and spectral (right panel) profiles of
SSVEP from wet (upper panel) and dry (lower panel) EEG headsets.
Each color represents a channel. It can be observed that the dry-
electrode EEG is noisier than the wet-electrode EEG. (Best view in
color).

TABLE II
COMPARISON OF THE WET-EEG DATA AND THE DRY-EEG DATA

5) Statistical Analysis: For the comparison of multiple
methods, a two-way repeated-measures analysis of variance
(ANOVA) was conducted to determine whether there was a
statistically significant interaction between two within-subjects
factors of method and data length. Greenhouse-Geisser correc-
tion was applied in light of violations of sphericity assessed by
Mauchly’s test. When the main effect was significant (p < .05),
post hoc pairwise comparisons of t-tests were performed with
the adjustment of Bonferroni correction. For the comparison of
two methods, a planned paired t-test was conducted to evaluate
the statistical significance. Bonferroni adjustment was applied
in the case of nonorthogonal contrast. Data were presented as
the mean ± standard error of the mean (s.e.m) unless otherwise
stated. The statistical procedures were conducted using SPSS
Statistics 26 (IBM, Armonk, NY, USA).

III. RESULTS

1) Data Evaluation: Fig. 3 illustrates the temporal and spec-
tral profiles of grand-average SSVEP for dry and wet EEG
headsets. From visual inspection, it is evident that data from
the dry EEG headset were noisier than the wet EEG headset
in the temporal and spectral domains across channels. This is
supported by the SNR statistics in Table II. Compared with
the SSVEP from the wet EEG headset, the SSVEP from the
dry EEG headset had a significantly lower wide-band SNR
(dry:−18.33± 0.29 dB; wet:−17.51± 0.31 dB; p < .001) and
narrow-band SNR (dry: 2.26± 0.25 dB; wet: 2.7± 0.26 dB;
p < .001). The low-SNR attribute of the dry EEG headset is due
in part to its higher impedance. The impedance of dry electrodes

was approximately 8 times greater than that of wet electrodes
(dry: 160.09± 10.27 kΩ; wet: 21.15± 1.93 kΩ; p < .001). In
addition, the result of estimated latency showed that there was
no significant difference between the two EEG headset systems
(dry: 151.61± 4.64 ms; wet: 150.24± 5.02 ms; p = .806). The
estimated latencies were comparable because the amplifier and
stimulus computer were identical for the two sessions. Thus
we choose d = 150 ms for latency correction in the following
classification analysis.

2) Performance Evaluation: The performance of different
transfer learning based methods as well as the training-free
CCA method is illustrated in Fig. 4. In the upper panel the
dry-electrode EEG was used as test data (wet-to-dry scenario),
while in the lower panel the wet-electrode EEG was used as
test data (dry-to-wet scenario). In the wet-to-dry scenario, the
two-way repeated measures ANOVA revealed that there was a
statistically significant interaction between the method and data
length on accuracy, F (2.847, 210.677) = 26.858, p < .001
(w/o FB), F (2.619, 193.835) = 27.740, p < .001 (w/ FB),
and on ITR, F (2.526, 186.959) = 28.384, p < .001 (w/o FB),
F (2.364. 174.909) = 30.825, p < .001 (w/ FB). In the dry-to-
wet scenario, the two-way repeated measures ANOVA revealed
that there was a statistically significant interaction between
the method and data length on accuracy, F (4.406, 326.034) =
51.745, p < .001 (w/o FB), F (3.607, 266.941) = 46.146, p <
.001 (w/ FB), and on ITR, F (3.793, 280.652) = 43.932, p <
.001 (w/o FB), F (3.079, 227.882) = 42.045, p < .001 (w/
FB). In both of the scenarios, the follow-up simple main effects
were run and post-hoc pairwise comparison with a Bonferroni
adjustment revealed that ALPHA outperformed other methods
significantly (p < .001) for all data lengths, either on accuracy
or ITR (w/ or w/o FB). The data length corresponding to the
highest ITR varied between different methods and the details
are summarized in Table III.

Fig. 5 illustrates the performance of TRCA compared with
ALPHA in the fully-calibrated, the recalibration-free and the
hybrid calibration settings. For the fully-calibrated TRCA (blue
line), ALPHA in the recalibration-free setting (red line) signif-
icantly outperformed it in the wet-to-dry transfer direction on
accuracy and ITR at all data lengths w/o FB, and at the data
length of 0.4− 2s w/ FB, p < .05. For the recalibration-free
TRCA (black line), ALPHA in this setting (red line) significantly
outperformed it on accuracy and ITR regardless of the transfer
directions, data lengths and the use of filter banks, p < .05. For
TRCA in the hybrid calibration setting (cyan line), ALPHA
in the hybrid calibration setting (magenta line) significantly
(p < .05) outperformed it on accuracy and ITR for all scenarios
(transfer directions, data lengths and the use of filter banks)
except the dry-to-wet transfer direction w/ FB. When compar-
ing the recalibration-free ALPHA (red line) and the TRCA in
hybrid calibration setting (cyan line), in the wet-to-dry transfer
direction, ALPHA significantly outperformed TRCA in the w/o
FB scenario (p < .001) at all data lengths, and significantly
surpassed TRCA in the w/ FB scenario (p < .01) at data lengths
greater than 0.8 s.

When the number of training blocks was reduced from 9 to 1,
the follow-up analysis in Fig. 6 shows that ALPHA significantly
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Fig. 4. The average classification accuracy (A, B, E and F) and ITR (C, D, G and H) for the transfer learning approaches (ttCCA and LST) and
baseline approach (CCA). Data lengths of 0.2 s to 2 s with an interval of 0.2 s were used for evaluation. The upper panel illustrates the result when
the test data or target domain is the dry-electrode EEG. “Wet to dry” indicates the transfer from wet-electrode EEG to dry-electrode EEG. The
lower panel illustrates the result when the test data or target domain is the wet-electrode EEG. “Dry to wet” indicates the transfer from dry-electrode
EEG to wet-electrode EEG. The w/o FB or w/ FB indicates the scenarios when all the approaches are applied without or with filter bank analysis,
respectively. For instance, CCA in the scenario of w/ FB is FBCCA. The asterisks indicate a significant difference between ALPHA and ttCCA
(*p < .05, **p < .01, ***p < .001, Bonferroni corrected). (Best view in color).

TABLE III
ITRS OF THE TRANSFER LEARNING BASED METHODS AND THE BASELINE METHOD

1The data length corresponding to the highest ITR.

outperformed TRCA on ITR either w/o or w/ FB (p < .001).
It follows that ALPHA could achieve and surpass TRCA on
the performance by leveraging a considerably fewer number of
training blocks. More specifically, for the mean ITR in the w/
FB case, 1 training block in ALPHA (54.96 bpm) approximated
5 training blocks in TRCA (52.54 bpm). Two training blocks in
ALPHA (59.66 bpm) approximated 7 training blocks in TRCA
(59.54 bpm). Three training blocks in ALPHA (64.41 bpm)
approximated 8 training blocks in TRCA (61.66 bpm). Four
training blocks in ALPHA (65.68 bpm) approximated 9 training
blocks in TRCA (64.58 bpm). Note that ALPHA yielded better
performance than the baseline FBCCA regardless of the num-
ber of training blocks Nb, while TRCA was superior over the
baseline when Nb > 4.

The classification accuracy and ITR on the simulation data
are illustrated in Supplementary Fig. 1. Dovetailing with the
result of the realistic data in Fig. 4, ALPHA outperformed
ttCCA and LST as well as CCA substantially at all data lengths.
As assessed by two-way repeated measures ANOVA, there
was a statistically significant interaction between the method

and data length on accuracy,F (4.911, 363.423) = 36.145, p <
.001 (w/o FB), F (4.080, 301.903) = 36.839, p < .001 (w/
FB), and on ITR, F (3.174, 234.852) = 23.972, p < .001 (w/o
FB), F (2.982, 220.650) = 25.414, p < .001 (w/ FB). Follow-
up simple main effects and post-hoc pairwise comparison re-
vealed that the differences between ALPHA and other methods
were significant (p < .001, Bonferroni corrected) for all data
lengths, either on accuracy or ITR (w/ or w/o FB).

For the cross-day and cross-device transfer scenario, the de-
tails of result are presented in the Supplementary Material.

3) Feature Evaluation: Fig. 7 depicts the maximum ITRs
when only 1 correlation coefficient in Eq. (15) was used. In
comparison with the original result, a significant drop in ITR
was found (p < .001, Bonferroni corrected). This indicates that
each feature played a prominent role in the feature fusion step of
Eq. (15). In the subsequent step of Eq. (16), the effect of different
numbers of subspaces Nk on the maximum ITR is illustrated
in Supplementary Fig. 3. Compared with the conventional ap-
proach of Nk = 1, the introduction of more subspaces led to a
tendency of an initial increase in the ITR and plateaued at Nopt

k
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Fig. 5. The average classification accuracy (A, B, E and F) and ITR (C, D, G and H) for TRCA and ALPHA in various settings. The red line and
black line (”wet to dry,” or “dry to wet”) indicate the performance of the recalibration-free setting, i.e., transfer from wet-electrode EEG to dry-electrode
EEG, or vice versa. The magenta line and cyan line (”wet and dry,” or “dry and wet”) indicates the performance of the hybrid calibration setting,
i.e., utilizing wet-electrode and dry-electrode EEG simultaneously to classify dry-electrode EEG or wet-electrode EEG by cross validation. The blue
line indicates the performance of the fully-calibrated setting, i.e., evaluating the fully-calibrated TRCA in the target domain (”dry” or “wet”) by cross
validation. The upper panel illustrates the result when the test data or target domain is the dry-electrode EEG. The lower panel illustrates the result
when the test data or target domain is the wet-electrode EEG. Data lengths of 0.2 s to 2 s with an interval of 0.2 s were used for evaluation. The
w/o FB or w/ FB indicates the scenarios when all the approaches are applied without or with filter bank analysis, respectively. For instance, CCA in
the scenario of w/ FB is FBCCA. The gray shaded areas indicate a significant difference between the recalibration-free ALPHA (red line) and the
fully-calibrated TRCA (blue line) (Best view in color).

Fig. 6. The average ITR with a varying number of training blocks
for ALPHA and TRCA when the test data or target domain is the
dry-electrode EEG. The data length used for evaluation corresponds
to the maximum average ITR of each method. The dark line denotes
the baseline CCA method. Since CCA is training-free, it is not affected
by the number of training blocks. The asterisks indicate a significant
difference between ALPHA and TRCA (*p < .05, **p < .01, ***p < .001).
(Best view in color).

(wet to dry, w/o FB: p < .001, Nopt
k = 3; dry to wet, w/o FB:

p < .001, Nopt
k = 3; wet to dry, w/ FB: p < .01, Nopt

k = 3; dry
to wet, w/ FB: p = .45, Nopt

k = 2; Bonferroni corrected).
The effect of the subspace alignment on the accuracy is

illustrated in Fig. 8. For the scenarios of wet-to-dry transfer and
dry-to-wet transfer (either w/o or w/ FB), the accuracy at each

Fig. 7. The average ITR when only one of the correlation coefficients
is used compared with the case when all correlation coefficients are
used. The data length used for evaluation corresponds to the maximum
average ITR of each method. The asterisks indicate a significant dif-
ference between the case of 1 correlation coefficient and the case of
all correlation coefficients (*p < .05, **p < .01, ***p < .001, Bonferroni
corrected).
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Fig. 8. The effect of subspace alignment on the average accuracy in
various scenarios. Data lengths from 0.2 s to 2 s with an interval of 0.2 s
were used for evaluation. The “adaptation” in the legend denotes the
domain adaptation method in the study, i.e., subspace alignment. The
asterisks indicate a significant difference between the pairs (*p < .05,
**p < .01, ***p < .001).

Fig. 9. The effect of subspace alignment on the R-squared statistics
for various correlation coefficients. Data lengths from 0.2 s to 2 s with an
interval of 0.2 s were used for evaluation. The asterisks indicate a sig-
nificant difference between the pairs (*p < .05, **p < .01, ***p < .001).

data length was elevated significantly (p < .001) by aligning the
source SSVEPs and target SSVEPs to the same domain via the
proposed ASP and AC modules. This demonstrates the efficacy
of the subspace alignment in ALPHA. Then, the following
intermediate features were presented in an effort to delve into
the cause and effect relationship between the subspace alignment
and the improved accuracy.

As illustrated in Fig. 9, compared with the R-squared when
no subspace alignment was applied, each of the R-squared for
different data lengths was significantly boosted (p < .001) after
the subspace alignment (ASP for R3 and R4; AC for R2 and
R5). This is reasonable since in SSVEP-BCI, a higher R-squared
of the correlation coefficient features leads to an improved
accuracy [8], [37]. To further characterize the two embeddings
before the correlation operation in Eq. (16), the t-SNE features
for the embeddings before and after subspace alignment are
diagrammed in Fig. 10 and Supplementary Fig. 4. In Fig. 10, the

Fig. 10. The effect of subspace alignment (AC) on the low dimensional
feature space projected by t-SNE. The data length used for evaluation is
2 s. The test embeddings (W T

X[1]Xt) are represented by red dots. The

template embeddings w/ (WACT

X[1] X̄s) and w/o (W T
X[1]X̄s) subspace

alignment are represented by green dots and blue dots, respectively.
Each subfigure illustrates the data from a subject, and each dot rep-
resents a trial. The template embeddings are moved toward the test
embeddings under the influence of the subspace alignment. (Best view
in color).

test embeddings (W T
X[1]Xt, red dots) and template embeddings

w/ (WACT

X[1] X̄s, green dots) and w/o (W T
X[1]X̄s, blue dots)

subspace alignment are illustrated. It could be observed from the
visualization that the template embeddings were moved toward
the test embeddings by subspace alignment (AC) which aligned
the source domain to the target domain. In a similar vein, the
template embeddings (W T

X̄[1]X̄s, red dots) and test embeddings

w/ (WASPT

X̄[1] Xt, green dots) and w/o (W T
X̄[1]Xt, blue dots)

subspace alignment are illustrated in Supplementary Fig. 4.
Since the template embedding here came from the wet EEG
headset with a high SNR, the embeddings were densely clustered
and each cluster could correspond to a stimulus frequency.
The imposition of the subspace alignment (ASP) contributed to
pushing the test embeddings toward the cluster of template em-
beddings. Specifically, the test embeddings of WASPT

X̄[1] Xt and

W T
X̄[1]Xt were further evaluated. The comparison in Fig. 11

revealed that the subspace alignment (ASP) significantly en-
hanced the SNR of the test embeddings at all data lengths
(p < .001).

IV. DISCUSSION

Methodologically, it is noteworthy that ALPHA demonstrated
its utility in both transfer directions, as shown in Fig. 4. The
bidirectional boosting effect introduced by the auxiliary cross-
device EEG data was in line with the prior study of LST [18].



LIU et al.: ALIGN AND POOL FOR EEG HEADSET DOMAIN ADAPTATION (ALPHA) TO FACILITATE DRY ELECTRODE BASED SSVEP-BCI 805

Fig. 11. The effect of subspace alignment on the SNR (wide-band
SNR) for various data lengths. Data lengths from 0.2 s to 2 s with an
interval of 0.2 s were used for evaluation. The asterisks indicate a sig-
nificant difference between the pairs (*p < .05, **p < .01, ***p < .001).

However, ALPHA outperformed LST by a good margin in
both transfer directions. It is of interest to note that ttCCA
also showcased its efficacy in the cross-device transfer task,
notwithstanding that it was originally designated for a cross-
subject transfer task [14]. Thus, for a fair comparison, ttCCA
was included in the study as a competitive method. Under the
framework of ALPHA, i.e., subspace decomposition, subspace
alignment and subspace pooling, ttCCA could be cast as a special
case of ALPHA. The hallmark of ALPHA is that it provides
an additional step of subspace alignment after obtaining spatial
filters in the subspace decomposition. As such, Fig. 8 to Fig. 11
validated its efficacy and attempted to probe a causal role of
the subspace alignment. As indicated by the findings, after
aligning the source domain and target domain to a congruent
subspace, the SNR of the spatially filtered SSVEP was markedly
enhanced. In the feature space, the enhancement of SNR would
exert a facilitative effect on reducing the distance between the
test embedding and template embedding. Accordingly, the R-
squared after the correlation operation was heightened, which
led to improved classification accuracy and ITR. For subspace
pooling, the ALPHA capitalized on more subspaces than the
conventional first largest subspace. For most of the cases, the
introduction of more subspaces brought about improvement in
ITR. This is reasonable since the additional subspaces may
contain discriminative information for classification, which has
received less attention in conventional frequency recognition
approaches [39], [40].

From a perspective of practical application, the utility of
ALPHA in the transfer direction of wet-to-dry EEG headsets
merits extra attention. In this scenario, with zero training for the
dry EEG headset, ALPHA has been shown to outperform other
transfer learning based methods (ttCCA and LST) as well as the
fully-calibrated method (TRCA) as evidenced in Fig. 4, Fig. 5,
and the result of simulation data in Supplementary Fig. 1. By
leveraging additional data from wet EEG headset as hybrid cal-
ibration, the performance of ALPHA could be further improved
and it significantly outperformed the TRCA method in the same
setting. For the fully-calibrated method, we also compared the
extended CCA (eCCA) [5] and found that ALPHA significantly
outperformed eCCA (p < .001) under various conditions (w/o
FB, w/ FB and w/ different number of training blocks) in the
wet-to-dry scenario. Thus the results indicate the effectiveness
of ALPHA and imply that the conventional fully-calibrated
protocol may not be best suited for the dry electrode based

SSVEP-BCI system. To boost the performance of the system, an
alternative is to use ALPHA to exploit the calibration data from a
high-SNR source, e.g., the gold-standard wet EEG headset. With
the aid of auxiliary data from the high-SNR source domain, the
performance of the dry-electrode system (w/o FB: 66.02± 3.58
bpm, w/ FB: 72.91± 4.87 bpm) could surpass the training-free
baseline of the wet-electrode system (w/o FB: 62.92± 3.21
bpm, w/ FB: 67.46± 3.36 bpm), as shown in Table III and
Fig. 4. Moreover, the number of calibration blocks required
could be reduced. As suggested by Fig. 6, using only 4 blocks of
wet-electrode data in the alternative protocol via ALPHA could
yield performance comparable to 9 blocks of dry-electrode data
in the conventional fully-calibrated protocol. Quantitatively,
measured by the data utility η = ITR−ITRFBCCA

Nb
(a metric

modified from the cost-performance ratio (CPR) in [20]), the
alternative protocol via ALPHA has a significantly higher data
utility than the conventional protocol (ηALPHA = 5.52± 0.32,
ηTRCA = 2.44± 0.27, p < .001). Compared with other BCI
paradigms, the reduction in the calibration block is practically
more important. This is because the SSVEP-BCI has a down-
side of eliciting visual fatigue, and the fatigue deteriorates the
performance and user experience. Thus, the effort toward fewer
blocks of calibration data is indispensable in practical settings,
and ALPHA can lend insight to it. For real-world applications,
the alternative protocol via ALPHA can improve the usefulness
of dry electrode based SSVEP-BCI systems. In other practical
scenarios, for instance, when we are concerned that the gel of
a wet EEG headset is prone to dry out in a test session, the
alternative protocol can also be applied to augment the efficacy
of a dry EEG headset. In addition, for computational cost in
practical application, the single-trial EEG (e.g., 2-s data length
in w/ FB scenario) could be recognized by ALPHA with less
than 90-ms computation overhead on a desktop computer with
a 3.60 GHz CPU (16 GB RAM), which indicates the feasibility
of online implementation.

A large number of subjects (i.e., 75) in the study helps to
reduce bias in the evaluation of the algorithm. Nevertheless, the
present study has limitations, and the following issues await
further investigation. The prospect of our work is to develop a
performant dry-electrode SSVEP-BCI system for daily applica-
tions with the assistance of wet-electrode EEG. Besides cross-
device transfer learning, the present study reveals promising
result on the cross-day transfer learning. In future studies, other
confounding variables, e.g., cross-subject variability etc. may be
taken into account to realize a long-term plug-and-play transfer
learning system. Thus, more methodological improvements and
engineering applications are necessitated in our future work.
Recent advances in deep transfer learning could be introduced
in considering the large data volume in the study. It should be
noted that ALPHA can also be tailored for other tasks, e.g.,
cross-subject transfer learning and training-based frequency
recognition. Its components, such as the subspace pooling could
probably yield greater ITR gains considering the short data
length and gaze shift time used in the training-based methods.
The efficacy of ALPHA is orthogonal to existing feature en-
hancement methods [6], [19], and it could be applied with filter
bank analysis [6] and other techniques [19].
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V. CONCLUDING REMARKS

To conclude, we proposed a recalibration-free cross-device
transfer learning framework, i.e., the ALign and Pool for EEG
Headset domain Adaptation (ALPHA) to boost the performance
of dry electrode based SSVEP-BCI. Domain adaptation is in-
troduced to the SSVEP-BCI and is accomplished by aligning
the spatial pattern and covariance of the source domain and
target domains. The efficacy of ALPHA is corroborated under
various conditions, and the impact on the features exerted by
the subspace alignment is characterized. The result indicates
that ALPHA achieves state-of-the-art performance among the
transfer learning methods, whether transferring from wet to
dry EEG headsets or from dry to wet EEG headsets. From the
viewpoint of practical utility, ALPHA outperforms the fully-
calibrated method of TRCA when transferring from wet to
dry EEG headsets. By augmenting the dry-electrode EEG with
wet-electrode EEG, the need for calibration blocks could be
lessened. Seen in this light, the present study opens an avenue
for boosting the performance of dry-electrode SSVEP-BCI by
high-fidelity auxiliary data and proposes potential solutions to
expedite its real-world application.
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I. SUPPLEMENTARY MATERIAL

A. Align spatial pattern (ASP) for the 3rd and 4th set of filters

For the 3rd set of spatial filters, the spatial filters are
obtained by calculating the source SSVEP template and all
the single-trial source EEG data in Eq. (1). Thus the 3rd set
of spatial filters lie in the source domain, similar to the 2nd
set of spatial filters. And the 4th set of spatial filters can be
regarded to lie in the target domain, similar to the 1st set of
spatial filters. Since the 3rd and 4th set of spatial filters are
derived from the same reference, i.e., source SSVEP template,
the difference between source domain and target domain can
be estimated and compensated by the subspace alignment of
ASP. More formally, the details are the reusing of Eq. (6) to
(9) as follows.

For the 3rd set of spatial filters WXsX̄ and and the 4th set
of spatial filters WXtX̄ , the corresponding spatial pattern in
Ds and Dt have the form

As = W−T
XsX̄

At = W−T
XtX̄

(S1)

By assuming Ds and Dt share underlying spatial pattern
after affine transformation, we can solve the following opti-
mization objective

minimize
P

∥∥As −AtP
T
∥∥2

F

s.t. PP T = I
(S2)

The solution to the Procrustes problem can be written as

P = UV T (S3)

where U and V are the left and right singular vectors of
AT

s At, i.e.,
USV T = AT

s At (S4)

S is a diagonal matrix in the singular value decomposition.
Then the transformed spatial filter for WXtX̄ can be written
as

WASP
XtX̄

= WXtX̄P T (S5)

B. The pilot study of cross-day and cross-device transfer
learning

For a user in practical applications, especially for the
patients (e.g., with amyotrophic lateral sclerosis, ALS), there
exists a scenario of long-term use for the BCI system that
provides assistance and communication. For this scenario, the
cross-day variability should be taken into account, besides the
cross-device variability. To this end, one of our followed-up
works applies the proposed method to the problem of cross-
day and cross-device transfer learning.

In our pilot study, 5 subjects participated in the experiment
of a 40-target SSVEP-BCI spelling task. Each subject per-
formed the spelling task on two different days (day 1 and day
2). The interval of the two days lasted at least one week. Two
different EEG headsets, i.e., wet-electrode headset and dry-
electrode headset were used in each day, and the wet-electrode
headset was applied prior to the dry-electrode headset. In each

session of the wet or dry EEG headset, 6 blocks of SSVEP-
BCI task were performed, and each block comprised 40 trials.
Each trial consisted of 4-s visual stimulation tagged by a
stimulus frequency, which ranged from 8 Hz to 15.8 Hz with
an interval of 0.2 Hz. The EEG recording and preprocessing
were in line with the 12-target experiment.
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Fig. 1. (Supplementary Figure 1) The average classification accuracy (A, B)
and ITR (C, D) for the transfer learning approaches (ttCCA and LST) and
baseline approach (CCA) evaluated on the contaminated simulation data. The
simulated transfer direction is from the wet EEG headset to the dry EEG
headset. Data lengths from 0.2 s to 2 s with an interval of 0.2 s were used
for evaluation. The w/o FB or w/ FB indicates the scenarios when all the
approaches are applied without or with filter bank analysis, respectively. For
instance, CCA in the scenario of w/ FB is FBCCA. The asterisks indicate
a significant difference between ALPHA and LST (*p < .05, **p < .01,
***p < .001, Bonferroni corrected). (Best view in color.)

In performance evaluation, we compared 3 transfer learning
methods (ALPHA, ttCCA and LST), a baseline training-
free method (CCA/FBCCA), and a fully-calibrated method
(TRCA) in different cross-day and cross-device scenarios. The
post-hoc cross-day analysis includes the transfer from day 1
to day 2 (1to2), day 2 to day 1 (2to1), day 1 to day 1 (1to1),
day 2 to day 2 (2to2). The cross-device scenarios include wet
to dry, dry to wet, as well as dry to dry, and wet to wet. For all
the scenarios, EEG data from the source domain were used as
training data and the EEG from the target domain were used
as test data.

When the test data is dry-electrode EEG, the result for
the w/ FB case is illustrated in Supplementary Figure 2. For
the cross-day and cross-device transfer, ALPHA (red line)
outperformed other methods in various scenarios. The average
maximum ITRs for the within-day wet to dry (1to1 and 2to2),
the cross-day wet to dry (1to2 and 2to1), the cross-day dry
to dry (1to2 and 2to1), and the fully-calibrated TRCA (day 1
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Fig. 2. (Supplementary Figure 2) The average information transfer rate (ITR) for the w/ FB scenario in cross-day cross-device transfer learning scenario.
The upper panel denotes the transfer direction when day 1 is the target domain or test data. The lower panel denotes the transfer direction when day 2 is the
target domain or test data. ”AtoB” denotes transfer from day A to day B. Data lengths of 0.2 s to 4 s with an interval of 0.2 s were used for evaluation.

and day 2) were in a descending order, i.e., 109.73 bpm at 1
s, 103.24 bpm at 1.2 s, 90.71 bpm at 1.2 s, 77.40 at 1.2 s,
respectively. For each of the 5 subjects, ALPHA consistently
yielded better performance than LST and ttCCA at the data
length of 1 s in various transfer directions.

The pilot study validates the feasibility of the proposed
method (ALPHA) in the cross-day and cross-device transfer
learning circumstance. And it implies that the within-day
cross-device ALPHA could achieve the best performance in
various transfer directions. Nevertheless, the cross-day wet-to-
dry transfer via ALPHA is a competitive protocol for it could
achieve better performance than other methods. The pilot study
holds promise for the long-term use of SSVEP-BCI in a plug-
and-play fashion, where the training data are recorded from
wet-electrode headset on the first day and users can use the
dry-electrode SSVEP-BCI system with zero training in the
future days.
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Fig. 3. (Supplementary Figure 3) The average ITR with a varying number of
subspaces utilized in the subspace pooling. Data length used for evaluation
corresponds to the maximum average ITR of each method. The asterisks
indicate a significant difference between the case of one subspace and the
case of more subspaces (*p < .05, **p < .01, ***p < .001, Bonferroni
corrected).
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Fig. 4. (Supplementary Figure 4) The effect of subspace alignment (ASP) on
the low dimensional feature space projected by t-SNE. The data length used
for evaluation is 2s. The template embeddings (W T

X̄[1]
X̄s) are represented

by red dots. The test embeddings w/ (WASPT

X̄[1]
Xt) and w/o (W T

X̄[1]
Xt)

subspace alignment are represented by green dots and blue dots, respectively.
Each subfigure illustrates the data from a subject. Each dot represents a trial
and each cluster formed by the dots represents a stimulus frequency or a class.
The red dots are dense since the template embeddings have a high SNR in the
source domain (wet-electrode EEG). The test embeddings are moved toward
the template embeddings under the influence of the subspace alignment. (Best
view in color.)




