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eldBEta: a Large Eldercare-
oriented Benchmark Database 
of SSVEP-BCI for the aging 
Population
Bingchuan Liu  1, Yijun Wang2, Xiaorong Gao1 & Xiaogang Chen3 ✉

Global population aging poses an unprecedented challenge and calls for a rising effort in eldercare 
and healthcare. Steady-state visual evoked potential based brain-computer interface (SSVEP-BCI) 
boasts its high transfer rate and shows great promise in real-world applications to support aging. 
Public database is critically important for designing the SSVEP-BCI systems. However, the SSVEP-
BCI database tailored for the elder is scarce in existing studies. therefore, in this study, we present a 
large eldercare-oriented BEnchmark database of SSVEP-BCI for the aging population (eldBEta). the 
eldBETA database consisted of the 64-channel electroencephalogram (EEG) from 100 elder participants, 
each of whom performed seven blocks of 9-target SSVEP-BCI task. The quality and characteristics 
of the eldBETA database were validated by a series of analyses followed by a classification analysis 
of thirteen frequency recognition methods. We expect that the eldBETA database would provide a 
substrate for the design and optimization of the BCI systems intended for the elders. the eldBEta 
database is open-access for research and can be downloaded from the website https://doi.org/10.6084/
m9.figshare.18032669.

Background & Summary
Aging population grows at an accelerating pace worldwide1–5. Over the past 180 years, the record life expectancy 
for humans has steadily increased by 2.5 years per decade and people have longer lives than ever before4,5. The 
longer lives are caused by the postponement of mortality, and most residents born in this century and in coun-
tries with high life expectancies will celebrate their 100th birthdays2,3. As a result of the longer livers and low 
fertility, the world is confronting an aging population, and one in five of the people in the world is projected to 
be elder citizens (60 years or above) by 20501,6. This situation is more grave in parts of the world, i.e., Europe and 
China, where one in four people is projected to be the elder by 20501,6,7. The global challenge of aging motivates 
the rising need of eldercare and technological support for the elder7–9.

Brain-computer interface (BCI) provides a direct path between the brain and external device for alterna-
tive and augmentative communication10,11, which suits the need for the eldercare. Among the BCI paradigms, 
steady-state visual evoked potential based BCI (SSVEP-BCI)12,13 has received increasing attention due to its 
noninvasiveness, high information transfer rate (ITR)13,14, zero calibration15,16, and low BCI-illiterate rate17. 
The high transfer rate of SSVEP-BCI is attributable to the high signal-to-noise ratio (SNR) of a typical brain 
response, i.e., SSVEP18, which is a frequency-tagged brain response elicited by periodic visual stimuli. The 
merits of SSVEP-BCI make it a prime candidate for real-world applications in eldercare and healthcare, e.g., 
brain-controlled wheelchair19,20, exoskeleton21,22, assistive robots23,24, and emergency call25.

Public databases play a vital role in designing and optimizing pattern recognition systems in real-world 
applications. For instance, in the field of computer vision, the open database of ImageNet26 has a far-reaching 
impact on the renewed flourish of artificial intelligence (AI). For the field of SSVEP-BCI, a number of stud-
ies in the literature contribute to the efforts in curating public databases17,27–30 and sharing relevant data31–34. 
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Specifically for the public SSVEP-BCI database, however, the vast majority of participants are young adults, 
and little attention so far has been paid to the elder. For the elderly population, a database targeted at this 
community could provide an opportunity to design a BCI system better suited for the eldercare applications, 
considering age-related differences existent in the BCI performance35–42. In particular, for SSVEP-BCI, previous 
studies reported that the elderly people achieved significantly lower ITR and accuracy than the younger partici-
pants35,40,41. The deteriorated BCI performance is attributable to the signal profile of decreased SSVEP amplitude 
associated with the age-related changes38,42–44, and physiologically further related to degradation in crystalline 
lens45, influence in retinal and central visual pathways43, and cell loss in visual cortex due to senescence46. Since 
there is a substantial distinction in SSVEP between the younger and older population, it is worthwhile to lever-
age the signal profile to develop high-speed SSVEP-BCI systems for eldercare applications.

To meet the demand for the open database designated for the elder, here we present a large eldercare-oriented 
BEnchmark database of SSVEP-BCI for The Aging population (eldBETA) in this paper. The eldBETA database 
features a large number of participants, i.e., 100 in the study, with old age of average 63 years, and up to 81 
years. Also, the database of electroencephalogram (EEG) was collected under a laboratory experimental proto-
col, which provided the database with a signal quality of gold standard in designing the practical applications 
tailored for the elderly community. In the experimental protocol, seven blocks of 9-target SSVEP-BCI tasks 
were performed for each participant, while 64 channels of continuous EEG including 5-s SSVEP for each trial 
were recorded. The data records were validated by signal profiles followed by SNR analysis and BCI quotient to 
demonstrate the quality and distribution of the database. The utility of the database was validated by the classi-
fication analysis, showing the elder could achieve an average ITR up to approximately 150 bpm by supervised 
methods and an average ITR up to approximately 60 bpm by training-free methods. Additionally, the fractal 
characteristics of the elderly population were validated by power-law analysis. In sum, the eldBETA database 
offers an opportunity to facilitate the development of methods and systems on BCI healthcare targeted at the 
elder, and contributes to extending our understanding of BCI technology in the era of the aging population.

Methods
Participants. This study recruited elderly volunteers with ages greater than 50 years old. One hundred par-
ticipants (33 males and 67 females) took part in this study. The age of the participants ranged from 52 to 81 with 
an average of . ± .63 17 6 05 (mean ± standard deviation). All the participants had a normal or corrected-to-nor-
mal vision. The participants were instructed to be familiarized with experimental protocol and gave full written 
consent before the experiment. The experimental protocol was under the declaration of Helsinki and approved by 
the institutional review board of Tsinghua University (NO. 20210032).

Brain speller. In this study, a 9-target brain speller of SSVEP-BCI was developed for the elder participants. As 
illustrated in Fig. 1(a), the 9 targets were aligned in a 3 × 3 matrix, which was visually presented on the screen of 
an LCD monitor (refresh rate: 60 Hz; resolution: ×1920 1080 pixels). Each target had a dimension of 168 × 125 
pixels and a digit character (a number from 1 to 9) lay at its center. The horizontal interval between adjacent tar-
gets was 100 pixels, and the vertical interval was 70 pixels. For the brain speller, the targets were encoded by joint 
frequency and phase modulation (JFPM)13, and the frequency and initial phase corresponding to the i-th row and 
the j-th column were obtained by
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where f0
 (Φ0) denotes the lower limit of stimulus frequency (initial phase), and f∆  (∆Φ) denotes the frequency 

interval (phase interval). In this study, the frequency information was set as f 80 =  Hz, ∆ = .f 0 5 Hz, and the 
initial phase information was set as 00Φ = , π∆Φ = .0 5 . The details of the encoded information can be found 
in Fig. 1(b).

The encoded information was used for generating visual flickers to evoke SSVEPs. In the implementation, a 
sampled sinusoidal stimulation method47 was employed under the environment of Psychophysics Toolbox48 in 
MATLAB (MathWorks, Inc.). Specifically, the grayscale value of the stimulus sequence for each flicker has the 
form

φ π φ= + +s f i f i f( , , ) 1
2

{1 sin[2 ( / ) ]}
(2)r

where fr denotes the refresh rate of the screen, and i denotes the current frame index of the sequence. The gray-
scale values of 0 and 1 denote the lowest and highest luminance of the screen, respectively.

Experimental procedure. In this study, each participant took part in seven blocks of online SSVEP-BCI 
task, in which multi-channel EEG were decoded in real time after a target was selected. Each block consisted of 
nine trials that corresponded to the nine targets on the speller. The timeline of each trial was as follows. At the 
beginning, one of the targets was cued and the border of the target was colored green for 4 s. The order of cues 
was randomized in the experiment and each target was cued once in a block. Followed by the cue, participants 
directed their attention to the target. Then all targets started to flicker simultaneously for 5 s and participants were 
instructed to gaze at the center of the target. After the flickering process, there was 1-s rest time for the online 
feedback, which was presented as a red rectangle covering the target. A training-free method of FBCCA16 was 
adopted in the online processing. At the end of each block, participants were encouraged to have a brief rest to 
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avoid visual fatigue. The duration of break time was controlled by the participant, generally ranging from 1 min 
to 5 min with an average of 3 min.

Data acquisition. This study recorded 64-channel EEG data during the SSVEP-BCI task. The data were 
acquired using SynAmps2 (Neuroscan Inc., Charlotte, USA) at a sampling rate of 1000 Hz. The recorded EEG 
were well synchronised to the triggers events of the SSVEP task by means of a parallel port, which is a gold stand-
ard in synchronisation in BCI systems. The montage was aligned according to the international 10-20 system and 
the vertex Cz was used as the reference of the montage. The impedances of all channels were kept below 20 kΩ 
before the experiment. Nine parietal and occipital channels, i.e., Pz, PO3/4, PO5/6, POz, Oz and O1/2, were used 
for the online processing. The data were collected in the electromagnetic shielding room. To suppress noise, a 
build-in notch filter was employed to remove the power-line interference.

Data preprocessing. The recorded offline data were preprocessed for storage and technical validation. To 
preserve broadband spectral properties, no filtering procedure was applied in the preprocessing. Continuous EEG 
data were extracted into EEG epochs, which comprised 0.5-s recordings before visual stimulation, 5-s responses 
of stimulation (SSVEP) and 0.5-s recordings after the stimulation. Then a downsampling procedure from 1000 
Hz to 250 Hz was applied to the epochs.

Fig. 1 The virtual keyboard of a brain speller and the signal profile of SSVEP responses. (a) The layout of 
the virtual keyboard for dialing with 9 digits (1∼9). (b) The stimulus frequency (red) and initial phase (blue) 
encoded for each target by the JFPM method. (c) The topographic maps of the spectral amplitude at the 
fundamental frequency corresponding to each target on the speller. (d) The temporal profile of the grand-
average SSVEPs. The oscillations for each stimulus frequency were visible during the visual stimulation marked 
by the pink lines. (e) The relationship between stimulus frequency and response frequency in the spectrum 
for the narrow-band SNR. The response frequency of SSVEP increases linearly with stimulus frequency with 
respect to fundamentals and harmonics. (f) The spectral profile of the grand-average SSVEPs. The spectral peaks 
were prominent at each stimulus frequency and were observable up to the 4th harmonics. (Best view in color).
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Evaluation metrics. Signal-to-noise ratio (SNR). The responses of SSVEP are well characterized in the 
spectral domain, in which signal-to-noise ratio (SNR) can be quantitatively measured. Here, a wide-band SNR 
was employed for it could better evaluate the level of harmonics, noise and the perspective BCI performance29. 
The SNR of SSVEP (in decibels, dB) is defined as follows29
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where fn
 denotes the stimulus frequency, P f( ) denotes the power spectral density for the frequency f , and Nh 

denotes the number of harmonics. For fn
 in the low-frequency band, Nh is usually set 529.

Information transfer rate (ITR). As a widely used metric in the BCI community, the ITR measures the perfor-
mance of participants as well as classification algorithms by means of information theory. Taking into account 
the number of targets (M) and the average target selection time (T in seconds), the classification accuracy (P) 
can be converted to the ITR (in bits per min, bpm), which is defined as follows10
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Note that T includes the gaze time (e.g., 5 s) and the overall gaze shift time. For offline analysis, a gaze shift 
time of 0.5 s13 is usually set for validation and model comparison.

BCI quotient (BCIQ). The metric of BCI quotient (BCIQ) provides a means to characterize the individual 
difference in the participant’s potential of leveraging the SSVEP-BCI29. The BCIQ estimates the quantile of a 
participant in SNR according to the scaling procedure of intelligence quotient49. Thus this metric is defined at 
the level of population, different from the level of single trial for SNR and the level of block for ITR. Derived 
from the SNR, the BCIQ is defined as follows29

BCIQ
SNR
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(5)
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where μ and σ denote the mean and standard deviation of the SNR by participant, respectively. In this study, 
μ = − .11 87 and 2 86σ = . .

Data records
This proposed database contained the data records of EEG from 100 participants, which were de-identified and 
indexed as S1∼S100. For each participant, continuous EEG data records in the form of EEG Brain Imaging Data 
Structure (EEG-BIDS)50 were provided. We also provided the associated records of epoch data that were stored 
in “.mat” structure array from MATLAB. The structure array was composed of the EEG data (“EEG”) and its 
associated supplementary information (“Suppl_info”) as its fields. The raw data can be found at Figshare and 
stored in “The eldBETA database” repository at the website51 https://doi.org/10.6084/m9.figshare.18032669. For 
convenient access to the data records, the database has an alternative source for storage at http://bci.med.tsing-
hua.edu.cn/download.html. Two types of EEG data, i.e., EEG epochs and raw EEG were provided for researchers 
to facilitate diverse research purposes. The EEG epochs were the EEG data with the data processing and stored 
as 4-dimensional matrices (channel × time point × condition × block). The names and locations of the channel 
dimension were given in the supplementary information. For the dimension of time point, the epochs had a 
length of 6 s, which included 0.5 s before the stimulus onset, 5 s during the stimulation (SSVEPs) and 0.5 s after 
the stimulus offset. For the dimension of condition, each index of the array corresponded to a stimulus fre-
quency and the details were listed in Table 1. Different from the epoch data, the raw EEG provided continuous 
EEG that were converted by EEGLAB52. According to EEG-BIDS50, each block of raw EEG data was curated in a 
folder (e.g., “ses-01”), in which the EEG were stored in “.edf ” files and the associated information can be found 
in “.tsv” and “.json” files. A preview of the raw data record is illustrated in Fig. 2.

The “Suppl_info” field of the epoch record provided basic information about personal statistics and exper-
imental protocol. The personal statistics included the age, gender, BCIQ and SNR with respect to each partic-
ipant. The experimental protocol included channel location (“Channel”), stimulus frequency (“Frequency”), 
initial stimulus phase (“Phase”) and sampling rate (“Srate”). The channel location was represented by a 64 × 4 
cell array. The first column and the fourth column denoted the channel index and channel name, respectively. 
The second column and the third column denoted the channel location in polar coordinates, i.e., degree and 
radius, respectively. The initial stimulus phase was given in radius. The sampling rate of the epoch data was 
denoted by “Srate”. A detailed data structure of the records was summarized in Table 2.

Index 1 2 3 4 5 6 7 8 9

Stimulus frequency 8 Hz 9.5 Hz 11 Hz 8.5 Hz 10 Hz 11.5 Hz 9 Hz 10.5 Hz 12 Hz

Table 1. The stimulus frequency corresponding to the index of condition in the data records.
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technical Validation
Signal profile and SNR analysis. We initially validated the data records by the visual inspections of 
temporal, spectral and spatial characteristics. A grand average was performed across blocks and participants to 
enhance the SNR of SSVEPs. Oz was chosen as the representative channel for the temporal and spectral visual 
inspections, which were shown in Fig. 1(d),(f). For each stimulus frequency, the oscillations were visible in the 
temporal progression of SSVEPs during visual stimulation. Rhythms in the temporal domain corresponded to the 
spectral domain, as illustrated in Fig. 1(f), where there was a prominent peak at each stimulus frequency. Apart 
from the fundamental frequency, the spectral peaks were observable up to the 4th harmonics. Figure 1(e) further 
illustrated the relationship between stimulus frequency and response frequency in the spectrum, where the nar-
row-band SNR was calculated for each spectral bin13. In line with the previous studies13,27,29, Fig. 1(e) showcased 
a predominant frequency-following response, where the response frequency of SSVEP increases linearly with the 
stimulus frequencies for the fundamentals and harmonics. For all channels at the scalp, the spectral amplitudes 
at each stimulus frequency were then topographically mapped, as depicted in Fig. 1(c). Each map corresponded 
to a target on the brain speller and the result showed that SSVEPs were dominantly distributed in the parietal and 
occipital regions across targets. Taken together, the visual inspections verified the hallmark features of SSVEPs.

To validate the SNR feature of the data records, the SNRs were calculated according to Eq. (3). Specifically, 
the nine channels (Pz, PO3/4, PO5/6, POz, Oz and O1/2) were assessed and the resultant values were then aver-
aged by channels. Also, a data length of 4 s, including the 0.5s∼4.5s of the SSVEP, was used for analysis. The 
changes in SNRs with respect to the stimulus frequency and blocks were then visualized. As illustrated in 

Fig. 2 A preview of raw EEG data records of the eldBETA database. The data records were curated according 
to the EEG Brain Imaging Data Structure (EEG-BIDS)50. The raw EEG were stored in the European data format 
(“.edf ”). The prefix “sub” denotes the participant and “ses” denotes the block (session).

Field Sub-field Data format

EEG Epoch 4-dimensional matrix

Suppl_info

Participant_id String

Age Integer

Gender String

Channel 64 × 4 cell array

Frequency 1 × 9 double

Phase 1 × 9 double

BCIQ Double

SNR Double

Srate Double

Table 2. The data structure and the content of epoch data.
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Fig. 3(a), there was an overall tendency of decline in SNR as the stimulus frequency increased (r 0 1472= − . , 
< .p 0 001), which was in line with the previous study29. Figure 3(b) delineated the change in SNR with blocks, 

showing that the SNRs of the data records were in a slightly declining tendency, though the decline was not sta-
tistically significant ( = − .r 0 0547, = .p 0 148). At the individual level, the distribution of SNRs together with 
ages was presented in Fig. 3(c), from which a dense distribution around 70 years and −13 dB could be identified. 
Furthermore, two types of data records in terms of SNR were exemplified and the signal profile of SNR topo-
graphic maps, averaged temporal waves, spectral topographic maps (at fundamental and harmonic frequencies) 
and SNR histograms were shown. Figure 3(d,e) illustrate the signal profile of a representative participant with 
high SNR (S55) and low SNR (S79), respectively. For the participant with high SNR (Fig. 3(d)), the SNR maps 
(upper left panel) as well as spectral maps (middle panel) were characterized by a pattern of dense distribution 
in the occipital region, whereas there were no specific patterns for the participant with low SNR (Fig. 3(e)).

We then compared the SNR of the database with the other two public SSVEP-BCI databases, i.e., the 
Benchmark database27 and the BETA database29. For a fair comparison, SSVEPs from 0 to 3 s and a subset of 
stimulus frequencies (8 Hz, 9 Hz, 10 Hz, 11 Hz, and 12 Hz) were selected for analysis for the three databases. For 

µ
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µ µ

µ

µ µ

µ µ

Fig. 3 The SNR profile of the data records. (a) The change in SNRs with respect to the stimulus frequency. 
(b) The change in SNRs with respect to the block number in the experiment. (c) The joint and marginal 
distributions of SNRs and ages. (d) An overview of a representative participant with high SNR. In this case, the 
SNRs were distributed toward high values and there was a pattern of dense distribution in the occipital region. 
(e) An overview of a representative participant with low SNR. In this case, the histogram has a distribution of 
low SNRs and no specific pattern could be observed in the topographic maps. In (d) and (e), upper left panel: 
topographic maps of SNR; bottom left panel: temporal waves of average SSVEPs; middle panel: topographic 
maps of spectral amplitude at the fundamental frequency, 2nd, 3rd and 4th harmonics; right panel: histogram of 
SNRs. Note that (a), (b) and (c) are from all participants and all trials, while (d) and (e) are from all trials for a 
specific participant. (Best view in color).
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the BETA database, participants from S16 to S70 were selected. Trials from the subset were band-pass filtered 
between 3 Hz and 100 Hz for the three databases, and were then padded with 2-s zeros29. This procedure was 
applied to the nine channels (Pz, PO3/4, PO5/6, POz, Oz and O1/2) and the histogram of the SNRs from the 
three databases were illustrated in Fig. 4. The result showed that the SNRs of the data records ( 13 902 3 94− . ± .  
dB) were significantly lower than that of the BETA database (− . ± .13 56 4 09 dB, < .p 0 001), and also than that 
of the Benchmark database (− . ± .13 043 3 84 dB, p 0 001< . ). In Supplementary Figure 1, we further illustrated 
the topographic maps of SNRs and SSVEP amplitudes for aging and young participants, in which the aging 
participants were from the eldBETA database and the young participants were from the Benchmark database. 
The result showed that SSVEP signals for aging participants had substantially lower SNR and SSVEP amplitude 
than that for young participants. The deterioration of the SSVEP signal profile for the elder participants is in line 
with the previous studies38,42–44.

Classification analysis. To validate the utility of the data records, this study conducted a classification anal-
ysis by benchmarking thirteen frequency recognition methods, including seven supervised methods and six 
training-free methods. Specifically, for each trial, a sliding window of data length (Np) from 0.1 s to 5 s with an 
interval of 0.1 s was used for analysis. The onset and boundary of the sliding window were set at 
T d T d N,s s p

 + + + 

, where Ts denotes the time point when visual stimulation starts. d denotes the latency of the 
visual system and conventionally d is set 140 ms13. Classification accuracy and ITR were used as evaluation met-
rics. For the metric of ITR, a gaze shift time of 0.5 s was used for analysis16,27.

For the supervised methods, we evaluated the data records by comparing seven methods, including 
task-discriminant component analysis (TDCA)53, multi-stimulus extended CCA (ms-eCCA)54, ensemble 
multi-stimulus task-related component analysis (ensemble msTRCA)54, ensemble task-related component anal-
ysis (ensemble TRCA)14, extended canonical correlation analysis (Extended CCA)55, individual template-based 
CCA (ITCCA)56, and L1-regularized multiway CCA (L1MCCA)57. Specifically, for each participant, 
leave-one-block-out cross validation was conducted for evaluation. For TDCA, the parameters of =N 5k , =l 3 
were set, which was based on the parameter selection in Supplementary Figure 2. The filter-bank technique was 
applied in TDCA, ms-eCCA, ensemble msTRCA, ensemble TRCA and Extended CCA, with the number of filter 
banks N 5fb =  and the weights were set according to the previous study16. The procedure of filter bank filtering 
was conducted for each data length. The results of the average classification accuracy and ITR were illustrated in 
Fig. 5. As assessed by one-way repeated measures analysis of variance (RMANOVA), there was a significant 
difference among methods for all data lengths in the accuracies and ITRs, with all < .p 0 001. For a short data 
length of 0.4 s, post-hoc pairwise comparisons revealed that TDCA > ms-eCCA/ensemble TRCA/ensemble 
msTRCA > Extended CCA > ITCCA > L1MCCA on ITR, where “>” indicates a statistical significance < .0 05 
between the two sides after Bonferroni correction. For a medium data length of 1 s, the accuracies for the meth-
ods were as follows: TDCA: . ± .0 925 0 012; ms-eCCA: . ± .0 904 0 013; ensemble TRCA: 0 868 0 018. ± . ; ensem-
ble msTRCA: . ± .0 864 0 018; Extended CCA: . ± .0 862 0 017; ITCCA: . ± .0 657 0 026; L1MCCA: 
. ± .0 608 0 025. The highest ITRs were achieved at different data lengths for the methods and the results were as 

follows: TDCA: 149 38 5 28. ± .  bpm at 0.4 s; ms-eCCA: . ± .136 06 5 15 bpm at 0.4 s; ensemble TRCA: 
. ± .133 36 5 93 bpm at 0.4 s; ensemble msTRCA: . ± .131 15 5 99 bpm at 0.4 s; Extended CCA: . ± .117 46 5 60 

bpm at 0.5 s; ITCCA: 61 15 4 33. ± .  bpm at 0.8 s; L1MCCA: 53 58 3 44. ± .  bpm at 1.2 s. Besides, we also evalu-
ated other combined methods, e.g., ms-eCCA+ms-eTRCA54, and the performance comparisons between 
TDCA and ms-eCCA+ms-eTRCA or ms-eCCA were shown in Supplementary Figure 3 and 4, respectively. The 
result of the supervised methods revealed an average ITR of approximately up to 150 bpm at 0.4 s, which could 
satisfy the eldercare scenarios that demand high-speed output of commands.

In parallel, six training-free methods including filter bank CCA (FBCCA)16, canonical variates with autore-
gressive spectral analysis (CVARS)58, temporally local multivariate synchronization index (tMSI)59, minimum 
energy combination (MEC)60, multivariate synchronization index (MSI)61 and CCA15 were compared. For the 
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Fig. 4 The histograms of SNRs from the eldBETA, the BETA and the Benchmark databases. The curve denotes 
the fitted normal probability density function (PDF) of the distribution. The dashed line denotes the mean 
of the distribution. It is noticeable that eldBETA database has a lower SNR than the BETA database and the 
Benchmark database. (Best view in color).
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methods except FBCCA, a band-pass filtering with a passband of 6 Hz∼100 Hz was applied. Figure 6 illustrates 
the average classification accuracy (a) and ITR (b) for the training-free methods. A significant difference 
between methods was found in the accuracies and ITRs, as revealed by one-way RMANOVA, with all < .p 0 001. 
For a medium data length of 1 s, post-hoc pairwise comparisons revealed that FBCCA > tMSI > CVARS/MSI 
> MEC/CCA on ITR. For a long data length of 5 s, the accuracies for the methods were as follows: FBCCA: 
. ± .0 917 0 013; CVARS: . ± .0 916 0 013; tMSI: 0 908 0 014. ± . ; MSI: . ± .0 89 0 015; MEC: . ± .0 863 0 017; CCA: 
. ± .0 854 0 018. The highest ITR for the training-free methods were attained after 1 s, and the results were as 

follows: FBCCA: 60 14 3 44. ± .  bpm at 1.1 s; tMSI: 56 58 3 72. ± .  bpm at 1 s; CVARS: 54 05 2 78. ± .  bpm at 1.5 s; 
MSI: ± .51 3 3 bpm at 1.2 s; MEC: . ± .46 5 3 08 bpm at 1.3 s; CCA: 45 08 3 0. ± .  bpm at 1.4 s. The training-free 
methods suggest an average ITR up to 60 bpm and 5-s accuracy above 90 %, which suits the eldercare scenarios 
that require no calibration for plug-and-play BCI control.

Furthermore, we calculated the accuracies for different stimulus frequencies and the result was shown in 
Supplementary Figure 5. Here we evaluated the 13 methods by the data records with a data length of 5 s, and the clas-
sification accuracies were averaged across all the methods. As assessed by one-way RMANOVA, there was a statisti-
cally significant difference in accuracies for different stimulus frequencies, . . = . < .F p(4 186, 476 811) 3 689, 0 001. 
The result also indicated a marginally significant tendency of decline in accuracy as the stimulus increased, 

= − .r 0 065, p 0 051= . , which was consistent with the tendency of decrease in SNR as the stimulus frequency 
increased in Fig. 3(a). In addition, the change in the maximum average ITR with blocks was further analyzed and the 
result was shown in Supplementary Figure 6. The ITR values were averaged across the six training-free methods. As 
revealed by one-way RMANOVA, there was a statistically significant difference in ITRs for different blocks, 

. . = .F(5 573, 551 74) 2 783, = .p 0 013. During the course of blocks, there was a tendency of a slight decrease in the 
ITRs, though not statistically significant, = − .r 0 056, p 0 139= . .

Power law analysis. Besides the narrow-band oscillation of SSVEPs, we further validated the broadband 
fractal characteristics of the data records by quantifying the power-law exponent of the spectrum. Here, a spectral 
separation method, namely the irregular-resampling auto-spectral analysis (IRASA)62 was used to extract the 
scale-free fractal signals. Specifically, the 0∼3 s of the SSVEPs from 5 stimulus frequencies (8 Hz, 9 Hz, 10 Hz, 11 
Hz, and 12 Hz) were analyzed by IRASA, in which the frequency range for spectral separation and power-law 
fitting was from 3 Hz to 100 Hz. By means of the power-law fitting, we estimated the power-law exponent, a.k.a. 
the slope factor of the linear model that fitted the power spectrum in the log-log plot. For each of the 64 channels, 

Fig. 5 The average classification accuracy (a) and ITR (b) for the seven different supervised methods. Data 
lengths from 0.1 s to 5 s with an interval of 0.1 s were used for evaluation. The shaded area around the curve 
denotes the standard error of the mean. (Best view in color).

Fig. 6 The average classification accuracy (a) and ITR (b) for the six different training-free methods. Data 
lengths from 0.1 s to 5 s with an interval of 0.1 s were used for evaluation. The shaded area around the curve 
denotes the standard error of the mean. (Best view in color).
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the power-law exponent was computed and then averaged by blocks and by conditions. Finally, the exponent 
values were averaged by channels from the region of interest (ROI), in which five typical montages (frontal, occip-
ital, central, temporal and all channels, details were listed in Table 3) were evaluated. This procedure was applied 
to the Benchmark database as well as the BETA database for comparison. In the BETA database, since the dura-
tion of visual stimulation for S1∼S15 was 2 s, these participants were excluded for analysis and participants from 
S16 to S70 with a stimulation duration of 3 s were evaluated. The negative of the power-law exponential (k) for the 
three databases was illustrated in Fig. 7. For each montage, Student’s t test with Bonferroni correction revealed 
that the exponent k in the eldBETA was significantly smaller than that in the Benchmark database and than that 
in the BETA database, with all p 0 001< . . For instance, for the three databases in the montage of all channels, the 
average power spectrum (solid curves) with the associated power-law fitting (dashed curves) was illustrated in 
Fig. 7 (upper right panel) and the average exponent for each database was as follows: eldBETA: 0 872 0 301. ± . ; 
Benchmark: 1 176 0 307. ± . ; BETA: . ± .1 137 0 277. Compared with the Benchmark and BETA database, the lower 
value of the exponent in eldBETA indicates an increase in the broadband noise. Since the participants from the 
eldBETA database have older ages (illustrated in the bottom right panel), the result of the power-law analysis is 
then in line with the previous study63, and lends support to the neural noise hypothesis of aging64,65.

BCIQ profile. To validate the individual difference and variety in the data records, the metric of the BCIQ for 
each participant was calculated in Eq. (5) and then displayed in Fig. 8. Here, each participant (S1∼S100) is 
indexed by a row and a column, where a row denotes an individual and a column denotes tens of individuals. In 
line with the previous study29, the BCIQ for the data records can well predict the proficiency in using the BCI, i.e., 
the BCI performance, with = .r 0 768, p 0 001< . . For instance, participant S1 and participant S100 have the 

Frontal FP1/2, AF3/4, FPz, Fz, F1/2. F3/4, F5/6, F7/8

Central FC3/4, Cz, C1/2, C3/4, CPz, CP1/2, CP3/4

Temporal FT7/8, FC5/6, T7/8, C5/6, CP5/6, CP7/8

Occipital Pz, P1/2, P3/4, P5/6, P7/8, POz, PO3/4, PO5/6, PO7/8

Table 3. The comprised channels of four typical montages.

Fig. 7 The comparison of the power-law characteristics for the eldBETA, the BETA, and the Benchmark 
databases. (Upper left) Bar plot of the negative of the power-law exponent for the three databases with different 
montages. (Bottom left) The channel location corresponding to each montage. The asterisks indicate a statistically 
significant difference between the pairs. * < .p 0 05, ** < .p 0 01, *** < .p 0 001, Bonferroni corrected. (Upper 
right) The power spectrum (solid curves) with the associated power-law fitting (dashed curves) for the three 
databases. The shaded area indicates a statistical significance (p 0 05< . ) between the three databases as assessed 
by one-way RMANOVA. Green: the eldBETA database; Brown: the BETA database; Blue: the Benchmark 
database. (Bottom right) Bar plot of the age distribution for the three databases. (Best view in color).
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BCIQ of 87 and 128, respectively, which reveals the projected low (20 bpm, maximum average ITR of FBCCA) 
and high (158 bpm, maximum average ITR of FBCCA) proficiency for the BCI speller.

Usage Notes
The following key notes are provided for better usage of the data records.

•	 Data import Data can be imported to the workspace by loading the epoch data record in MATLAB, or using 
the package “scipy.io.loadmat” or “h5py.File” in Python. For conventional classification analysis, the epoch 
data in the record are recommended. For other research purposes, e.g., asynchronous classification analysis, 
or blind source separation (BSS), the raw data without epoching and processing (the “.edf ” data) could be 
utilized. The data structure of the “.edf ” data is generated by the “loadcnt” and “writeeeg” function from 
EEGLAB, and the details can be referred to the EEGLAB. The epoch data can be extracted from the raw data.

•	 Subset selection A subset of the participants or the stimulus frequencies could be selected in the design of a 
specific BCI system. For instance, the BCIQ listed in Fig. 8 could serve as a guideline to select participants for 
developing a BCI system designated for a particular user population, e.g., BCI illiteracy.

•	 Data partition The cross validation that leaves one block out in each fold is a common practice in classifica-
tion analysis. In the cross validation, the data partition by trials should be avoided due to the fact that there 
exist temporal correlations between trials in a block66, different from the data nature in other domains, e.g., 
computer vision. Also, a sliding window with a random onset in the test data should be avoided.

Code availability
Custom codes for generation and processing of the data and the figures are presented in the repository67. A 
MATLAB script “eldbeta_convert.m” was provided for data processing in converting the raw data to the epoch 
data. The data preprocessing and technical validations were conducted in MATLAB R2018b and Python 3.6.10. A 
“README.md” file was used for a brief description of the code in the code repository. The Benchmark database 
and the BETA database as well as the classification algorithms can be found in their corresponding repositories 
related to the papers, and thus they are not provided in this data descriptor.
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Figure 1. (Supplementary Figure 1) Topographic maps of average SNR and SSVEP amplitude for young participants (the
Benchmark database) and aging participants (the eldBETA database) at different stimulus frequencies. For illustrative purpose,
the spectral amplitude at the fundamental frequency and the 2nd harmonic are calculated and shown.

1/4



1 2 3 4 5 6 7 8 9

Number of subspaces

0

1

2

3

4

5

6

7

8

9

L
a

g

0.9

0.92

0.94

0.96

0.98

1

N
o

rm
a

li
ze

d
 I

T
R

N
o

rm
a
li

ze
d

 I
T

R

Normalized ITR

0.92

1

0
.9

1

1

Figure 2. (Supplementary Figure 2) Normalized maximum average ITR of TDCA with a different number of subspaces and
lag. The upper panel and the left panel are the ITR with a different number of subspaces and lag, respectively. The dashed line
denotes the choice of parameters in this study. (Best view in color.)
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Figure 3. (Supplementary Figure 3) Average classification accuracy (a) and ITR (b) for the ms-eCCA+ms-eTRCA and the
TDCA. Data lengths from 0.1 s to 1 s (with an interval of 0.1 s) are used for evaluation. The asterisks indicate significant
differences between the ms-eCCA+ms-eTRCA and the TDCA by paired t-test (*p < .05, **p < .01, ***p < .001).
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Figure 4. (Supplementary Figure 4) Average classification accuracy (a) and ITR (b) for the ms-eCCA and the TDCA. Data
lengths from 0.1 s to 1 s (with an interval of 0.1 s) are used for evaluation. The asterisks indicate significant differences
between the ms-eCCA and the TDCA by paired t-test (*p < .05, **p < .01, ***p < .001).
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Figure 5. (Supplementary Figure 5) Average classification accuracies for different stimulus frequencies. Data length of 5 s
was evaluated for the 13 target recognition methods and classification accuracies were averaged across all the methods.
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Figure 6. (Supplementary Figure 6) The change in maximum average ITR with respect to the block number in the experiment.
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